REVIEW

Magnetite nanoparticles as sorbents for dye removal: a review

Sandip K. Panda¹ · Ishika Aggarwal² · Harish Kumar³ · Lalit Prasad¹ · Anil Kumar² · Ajit Sharma⁴ · Dai-Viet N. Vo⁵ · Doan Van Thuan⁶ · Vivek Mishra⁷

Received: 25 November 2020 / Accepted: 23 December 2020 © The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021

Abstract

Pollution of industrial wastewaters containing dyes is a major concern for health in many countries, calling for advanced remediation techniques. Here, we review dye classification, toxicity, and removal with focus on adsorption using nanomaterials and magnetic nanoparticles. We present isotherm modeling and kinetic studies. We discuss factors controlling dye adsorption, such as pH, dye concentration, adsorbent amount, and temperature. Adsorption using magnetic nanoparticles appear as a simple and cost-effective technique. Removal efficiency increases with adsorbent concentration but declines sharply with increasing pH. Temperature is also highly influencing the removal.

 $\textbf{Keywords} \ \ \text{Dye removal} \cdot \text{Modified magnetite nanoparticles} \cdot \text{Low-cost adsorbents} \cdot \text{Greener adsorbents} \cdot \text{Activated carbon} \cdot \text{Wastewater treatment}$

Abbreviations		
BET	Brunauer-Emmett-Teller	
CMCH	Carboxymethylated chitosan	
CPTES	3-Chloropropyltriethoxysilane	
CTAB	Cetyltrimethylammonium bromide	
D-R	Dubinin-Radushkevich model	
EMCN	Ethylenediamine-modified magnetic chitosan nanoparticles	
FHH	Frenkel-Halsey-Hill	
FTIR	Fourier transform infrared spectroscopy	

- Division of Chemistry, SBAS, Galgotias University, Greater Noida, U.P., India
- Department of Chemistry, ARSD College, University of Delhi, New Delhi, India
- Department of Chemistry, Rajdhani College, University of Delhi, New Delhi, India
- Department of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara 144411, India
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City 755414, Vietnam
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam

Published online: 13 January 2021

Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201313, India

HHSS	Hierarchical hollow silica spheres
HRTEM	High-resolution transmission electron
	microscopy
MB	Methylene blue
MNPs	Magnetite nanoparticles
NPs	Nanoparticles
Ms	Specific saturation magnetization value
MSCM	Magnetic mesoporous silica-coated
	nanostructures
PAR	4-(2-Pyridylazo) resorcinol
PFO	Pseudo-first-order
PSO	Pseudo-second-order
RSD %	Relative standard deviation percent
SDS	Sodium dodecyl sulfate
SEM	Scanning electron microscopy
TEM	Transmission electron microscopy
VSM	Vibrating-sample magnetometer
XRD	X-ray diffraction

Introduction

A dye is a chemical compound that is used as a colored substance that binds to the substrate to which it is being applied. Nowadays, dyes are broadly used in many industries including textiles, paper, plastic, rubber, automotive, trucking, marine industries, food industries, paint industries, and coating, etc. Dyes generally have an artificial starting place

