

GALGOTIAS UNIVERSITY

Syllabus of

M. Tech: ENERGY AND ENVIRONMENTAL ENGINEERING

Name of School:	School of Engineering	
Department:	Civil Engineering	
Year:	2019-21	

School of Civil Engineering

M. Tech – Energy and Environmental Engineering (2019-2021)

S1. No	Course Code	Name of the Course	L	Т	Р	С
1	CENG5001	Professional and Communication Skills	0	0	4	2
2	MATH5001	Advanced Numerical and Statistical Methods	3	1	0	4
3	MENE5001	Renewable Energy Technology	3	0	0	3
4	MENE5002	Physico-chemical, Biological Principles and Processes	3	0	0	3
5	MENE5003	Environmental Quality Monitoring	3	0	0	3
6	MENE5004	Energy Auditing, Conservation & Management	3	0	0	3
7	MENE5005	Renewable Energy Technology Lab	0	0	2	1
8	MENE5006	Environmental Quality Monitoring Lab	0	0	4	2
		Total	15	1	10	21

Semester 1

Semester 2

Sl	Course Code	Name of the Course				
No	Course Code	Ivalle of the Course	L	Т	Р	С
1	MENE6001	Energy, Instrumentation, Measurement & Control	3	0	0	3
2	MENE6002	Environmental Audit & Impact Assessment	3	0	0	3
3	MENE6003	Design of Water & Wastewater Treatment Systems	3	0	0	3
4	MENE6004	Air Pollution & Its Control	3	0	0	3
5	MENE6019	Elective-I	3	0	0	3
6	MENE6039	Elective-II	3	0	0	3
7	MENE6005	Seminar	0	0	0	1
8	MENE6006	Energy, Instrumentation, Measurement &Control Lab	0	0	2	1

Semester 3

S1	Course Code	Name of the Course				
No	Course Coue	Name of the Course	L	Т	Р	С
1	MENE7001	Comprehensive Examination	0	0	0	2
2	MENE7002	Project (Phase I)	0	0	0	5
3	MENE6029	Energy Efficient Buildings (Elective-III)	3	0	0	3
4	MENE6032	Solid Waste Management (Elective-IV)	3	0	0	3
5	MENE6037	Remote Sensing & GIS Applications (Elective-V)	3	0	0	3
		Total	9	0	0	16

Semester 4

Sl	Course Code	Nome of the Course				
No	Course Code	Name of the Course	L	Т	Р	С
1	MENE8001	Project (Phase II	0	0	0	15

List of Electives

S1	Course Code	Name of the Electives				
No	Course Code	Ivalle of the Electives	L	Т	Р	С
1	MENE6013	Solar Energy Technology	3	0	0	3
2	MENE6015	Hydrogen & Fuel Cells	3	0	0	3
3	MENE6019	Energy Environment Climate Change	3	0	0	3
4	MENE6027	Bioenergy Technologies	3	0	0	3
5	MENE6029	Energy Efficient Building	3	0	0	3
6	MENE6032	Solid Waste Management	3	0	0	3
7	MENE6034	Design of Wastewater Treatment & Disposal System	3	0	0	3
8	MENE6035	Urban Environmental Quality Management	3	0	0	3
9	MENIECO27	Demote Consing & CIS Applications	2	0	0	3
	MENE6037	Remote Sensing & GIS Applications	3	0	0	5
10	MENE6037 MENE6038	Application of Bio-technology in Environmental Engineering	3	0	0	3
		Application of Bio-technology in	<u> </u>		, , , , , , , , , , , , , , , , , , ,	
10	MENE6038	Application of Bio-technology in Environmental Engineering	3	0	0	3
10 11	MENE6038 MENE6039	Application of Bio-technology in Environmental EngineeringRisk Assessment and Disaster ManagementMathematical Modelling in Environmental	3	0	0	3
10 11 12	MENE6038 MENE6039 MENE6040	Application of Bio-technology in Environmental EngineeringRisk Assessment and Disaster ManagementMathematical Modelling in Environmental EngineeringClean Development Mechanism & Green	3 3 3	0 0 0	0 0 0	3 3 3

Name of The Course	Renewable Energy Technolo	gy			
Course Code	MENE5001				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

- 1. Fundamental knowledge to the student about renewable and non-renewable energy.
- 2. Brief idea to students about types of energy and conversion technologies, processes, systems and devices.
- 3. Plasticize students to work with instruments
- 4. Encourage students to take up projects in those areas.
- 5. Implementation of renewable energy in project and development.

Course Outcomes

CO1	Explain the basic principles of various renewable energy conversion processes and devices used therein.
CO2	Understand the relationships between natural resources, consumption, population, economics of consumerism, etc in an environmental context.
CO3	Identify various parameters that influence the performance of devices/processes.
CO4	An understanding the problems of energy distribution, design, plan and execute.
CO5	To make a thought in terms of scientific and technological advancement in the spirit of a sustainable energy.
CO6	Discuss on latest research paper.

Course Content:

Unit I: Introduction to energy and resource

9 Hours

Introduction to energy and resources – Renewable energy sources - Availability of solar energy – Sunearth relationships - Estimation of solar radiation using Page-Angstrom method - Solar radiation measurement – Flat plate collectors – Solar water heating systems – Evacuated Tubular Concentrators -Solar air heating systems and applications – Concepts on solar drying, cooking, desalination, solar ponds and solar cooling - Passive heating and cooling of buildings – Basics of solar concentrators and types -Solar thermal power generation.

Unit II:Solar Cell

10 Hours

Physics of solar cells – Cell types and manufacture – PV applications - Characteristics of cells and module – Performance parameters - Estimation of module power output – PV system configurations – System components: Battery, charge controller and inverter.

Unit III: Biomass

Biomass to energy conversion processes – Anaerobic digestion, process parameters, biogas composition, digester types, high rate anaerobic conversion systems – Alcohol from biomass – Biodiesel: preparation, characteristics and application - Biomass combustion and power generation – Briquetting – Gasification: Process, types of gasifiers, applications – Waste to energy technologies.

Unit IV: Wind Power

Power in the wind - Types of wind mills – WEG components - Airfoils: lift and drag – Power curves and energy estimation - Micro siting – Indian wind potential. Small Hydro Power: Types, site identification, head and flow measurement, discharge curve, estimation of power potential and system components.

Unit V: Renewable Energy Technologies

Technologies for harnessing other renewable energy sources like geothermal, wave, tidal and ocean thermal energy.

Unit VI: Discussion on Latest Research Paper

2 Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

- 1. Frank Kreith and D.Yogi Goswami (2007), Handbook of Energy Efficiency and Renewable Energy, CRC Press.
- 2. John Twidell and Tony Weir (2006), Renewable Energy Resources, 2nd Edition, Taylor & Francis, USA.

10 Hours

7 Hours

9 Hours

Name of The Course	Physico-chemical, Biological Principles and Processes				
Course Code	MENE5002				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		4	0	0	4

- 1. To study about the solid- liquid- gas interactions
- 2. To understand about process kinetics
- 3. To deal with the microbial applications in environmental engineering
- 4. To study microbial activity and its application to treat wastewater
- 5. To apply microbial kinetics to addressed wastewater treatment problems

Course Outcomes

CO1	Understand the mass transfer and transport of impurities in system
CO2	Apply the concepts of oxidation- reduction equilibrium
CO3	Study and applying practically about microbial kinetics
CO4	Application of micro-organism for wastewater treatment
CO5	Apply microbial principles to environmental engineering
CO6	Discuss on latest research paper.

Course Content:

Unit I: Structure and Properties of Wa	ter 8 Hours
impurities, Abiotic reactions, Biological	significance in environmental engineering, Sources of Water metabolism. Solid-Liquid-Gas interactions, Mass transfer and , dispersion. Physical and Chemical interactions due to various
Unit II: Chemical Reactions	8 Hours
· •	rium and thermodynamics, Acid-baseequilibria, solubility a. Process kinetics, reaction rates and catalysis, surface and of particles in water stabilization.
Unit III: Ecosystem	8 Hours
•	nts, biogeochemical cycles, ecology of population; Ecological Moduley Interactions. typical natural and artificial ecosystems

Unit IV: Biochemistry

Biochemistry; Biological compounds– enzymes, coenzymes and amino acids, Microbiological concepts; Cells, classification and characteristics of living organisms, Characterization techniques, Reproduction, Metabolism, Microbial growth kinetics.

8 Hours

Unit V: Applications of Microbiological principles to environmental engineering 8 Hours

Applications of Microbiological principles to environmental engineering; assimilation of wastes, engineered systems, Concepts and Principles of carbon oxidation, Nitrification, Denitrification, Methanogenasis, etc., Concepts of quantization of degradable pollutants.

Unit VI: Discussion on Latest Research Paper 2 Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

- 1. Benefield, L.D. Judkins J.F. and Weand B.L. (1982). Process Chemistry for Water and Wastewater Treatment, End ed., Prentice-Hall, Inc, New Jersey, USA
- 2. Metcalf and Eddy, M.C., "Wastewater Engineering: Treatment, Disposal and Reuse", Tata McGraw-Hill Pulications, New Delhi, 2003

Name of The Course	Environmental Quality Monitoring	g			
Course Code	MENE5003				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		2	0	0	2

- 1. To teach students about various water quality parameters and their effect
- 2. Explain brief procedure for collection and preservation of samples of water and wastewater
- 3. Give idea to students about different standard methodologies for sampling and analysis of environment at whole and its constituents like water, wastewater, air and soil
- 4. To teach advance analytical methods for environmental quality monitoring
- 5. Conduct small projects on water quality monitoring of polluted and waste water in field condition

Course Outcomes

CO1	Schedule field studies and other data acquisition activities to be considered for compliance
CO2	Use a tiered monitoring approach consisting of rapid assessment or screening studies at site
CO3	Supervise monitoring techniques of various environmental parameters
CO4	Generate monitoring data relevant to decision making process
CO5	Manage and report environmental quality data in a way that is meaningful and understandable to intended audience
CO6	Discuss on latest research paper.

Course Content:

Unit I: General Sampling and Analytical Techniques 10 Hours

General principles for collection of representative sample, frequency of sampling, validation, interpretation and analysis of data, various statistical techniques, quality control, assessment and management.

Unit II:Methods for Physicochemical Analysis of Water/ Wastewater 10 Hours

Gravimetric methods for solids analysis in water and wastewater, determination of acidity, alkalinity and turbidity, analysis of common cations and anions in water/wastewater through various chemical techniques, determination of nitrogen, phosphorus and chemical oxygen demand (COD), acid-base titrations, precipitation titrations, complexometric titrations, oxidation-reduction titrations, working principles of electrodes, different types of electrodes.

Unit III: Biological Methods and Microbiology

10 Hours

Biochemical oxygen demand (BOD), MPN test for microbial pollution, plate counts; confirmatory tests for various microbiological agents.

Unit IV: Air Pollution Measurement

7 Hours

Sampling techniques for air pollution measurements; analysis of particulates and common chemical air pollutants, analysis of oxides of nitrogen, oxides of sulphur, carbon monoxide, hydrocarbon and poly aromatic hydro carbons.

Unit V:Advanced Analytical Methods

9 Hours

Working principles of Spectrophotometric methods; Nephelometric methods; Atomic absorption spectroscopy and its various analytical versions; Ion chromatography, High performance liquid chromatography, CHNO/S Analyzer, TOC analyzer and other advanced analytical instruments.

- 1. Metcalf and Eddy, (2003), Wastewater Engineering Treatment and Reuse, 4th edition, Tata McGraw Hill Education Private Limited, ISBN:978-00-704-9539-5.
- MN.Rao, H.V.N.Rao, (2007), Air Pollution, Tata McGraw Hill Publishing Company Limited, ISBN: 978-00-745-1871-7

Name of The Course	Energy Auditing Conservation and Management				
Course Code	MENE5004				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

- 1. To teach the basic concepts of energy audit and management.
- 2. Give brief knowledge about mathematical calculation and modelling of energy performance
- 3. Teach students about data collection and analysis
- 4. The energy auditing procedures, techniques, policy planning, implementation and energy audit instrument
- 5. To give a broadly knowledge about planning and management for economic growth

Course Outcomes

CO1	Understand the general aspect of energy auditing and management
CO2	Development of knowledge about the energy auditing procedures, techniques, policy planning and implementation.
CO3	Understand about energy audit instrument.
CO4	Mathematical approach of data collection and analysis.
CO5	Design of energy modelling and optimization
CO6	Discuss on latest research paper.

Course Content:

Unit I: General Aspects	8 Hours
General Philosophy and need of Energy Audit Management, General Principles of Energy Management Strategy. Energy Audit: Need, Ty Approach, Understanding Energy Costs, Bench	and Management. Definition and Objective of Energy Management, Energy Management Skills, Energy pes, Methodology and Approach. Energy Management marking, Energy performance, Matching energy usage y, Optimizing the input energy requirements, Fuel and

Unit II: Procedures & Technique 10 Hours

Data gathering : Level of responsibilities, energy sources, control of energy and uses of energy get Facts, figures and impression about energy /fuel and system operations, Past and Present operating data, Special tests, Questionnaire for data gathering.

Analytical Techniques: Incremental cost concept, mass and energy balancing techniques, inventory of Energy inputs and rejections, Heat transfer calculations, Evaluation of Electric load characteristics, process and energy system simulation.

Unit III: Energy Policy Planning and Implementation

Location of Energy Manager, Top Management Support, Managerial functions, Role and responsibilities of Energy Manager, Accountability. Motivating – Motivation of employees, Requirements for Energy Action Planning. Information Systems: Designing, Barriers, Strategies, Marketing and Communicating Training and Planning.

Unit IV: Energy Balance & MIS

7 Hours

10 Hours

First law of efficiency and Second law of efficiency, Facility as an Energy system, Methods for preparing process flow, Materials and Energy Balance diagram, Identification of losses, Improvements. Energy Balance sheet and Management Information System (MIS) Energy Modelling and Optimization.

Unit V: Energy Audit Instruments

8 Hours

Instruments for Audit and Monitoring Energy and Energy Savings, Types and Accuracy

Unit VI: Discussion on Latest Research Paper 2 Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

- 1. Stanley E. Manahan (2005), Environmental Chemistry, 8th Edition, CRC Press, ISBN: 978-15-667-0633-9.
- 2. Clair N Sawyer, Perry L. McCarty and Gene F. Parkin (2002), Chemistry for Environmental Engineering and Science, McGraw-Hill Science.

Name of The Course	Renewable Energy Technology Lab				
Course Code	MENE5005				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		0	0	2	1

- 1. To impart knowledge in the area of biomass to energy
- 2. Working principle knowledge of instruments
- 3. Brief knowledge about various renewable energy parameters
- 4. Knowledge about handling the instruments and how to operate in filed
- 5. The role of instruments in different engineering applications.

Course Outcomes

CO1	Study the devices used to measure various forms of energy.
CO2	Understand the basic working principle of energy measuring devices
CO3	Knowledge of various flow parameters
CO4	Handling efficiency of instruments and problem solving
CO5	Technical approach of the instruments in field condition

Course Content:

1. Determination of proximate analysis (Moisture content, ash, Volatile matter & fixed carbon) for a Given Biomass Sample.

2. Determination of Total solids, volatile Solids and calorific value for a given organic Biomass Sample.

3. Determination of elemental analysis (chemical method) for a Given Biomass Sample.

4. Determination of C/N Ratio for a given organic Biomass Sample.

5. Determination of Chemical Oxygen Demand, BOD, Total dissolved solids (TDS) and pH for a Given Slurry or Liquid Sample.

6. Determination of Dissolved Oxygen & Biochemical in a Liquid Slurry Waste Sample.

7. Determination of Calorific Value of a solid and liquid Biomass Sample using Bomb calorimeter.

8. To study the Effect of Different Loading Rates, Total Volatile Solids and Hydraulic Retention time on Generation of Biogas in Batch Type Digesters.

9. Determination of Lignin, Cellulose, Hemicelluloses in a Given Biomass Sample.

10. Determination of Potassium, Sodium and Phosphorous in a Given Waste Slurry Sample.

11. Determination of Crude Protein in a Given Biomass Sample.

12. Study of Gasifier and its performance evaluation with solid and loose biomass.

13. Characterization of liquid biomass (Viscosity, density, flash/fire point, cloud point) and its comparison with diesel

Suggested Reading

1. Frank Kreith and D.Yogi Goswami (2007), Handbook of Energy Efficiency and Renewable Energy, CRC Press.

School of Civil Engineering

Name of The Course	Environmental Quality Monitoring Lab				
Course Code	MENE5006				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		0	0	4	2

Course Objectives

- 1. To impart knowledge in the area of sampling and statistical analysis
- 2. Working principle knowledge of instruments
- 3. Brief knowledge about various parameters
- 4. Knowledge about handling the instruments and how to operate in field
- 5. The role of instruments in different engineering applications.

Course Outcomes

CO1	Learn various instruments process and about their features			
CO2	How to handle the instruments			
CO3	Supervise monitoring techniques of various environmental parameters			
CO4	Generate monitoring data and their application in various treatment process			
CO5	Manage and report environmental quality data in a way that is meaningful and understandable to intended project			

Course Content:

- 1. Estimation of pH
- 2. Determination of Total, suspended, dissolved volatile & fixed residue in a waste/water sample
- 3. Determination of Turbidity
- 4. Determination of the Carbonate, Bicarbonate, and Hydroxide Alkalinity
- 5. Determination of the type and Extend of Acidity
- 6. Estimation of the Optimum Dose of Coagulants for Coagulation
- 7. Estimation of the Hardness of water (EDTA Method)
- 8. Estimation of the Chloride Concentration.
- 9. Determination of the Dissolved Oxygen (DO) and percentage saturation
- 10. Determination of Biochemical Oxygen Demand (BOD) of wastewater
- 11. Determination of Chemical Oxygen Demand (COD) of wastewater

- 1. Metcalf and Eddy, (2003), Wastewater Engineering Treatment and Reuse, 4th edition, Tata McGraw Hill Education Private Limited, ISBN:978-00-704-9539-5.
- 2. MN.Rao, H.V.N.Rao, (2007), Air Pollution, Tata McGraw Hill Publishing Company Limited, ISBN: 978-00-745-1871-7

Name of The Course	Energy, Instrumentation, Measurement & Control				
Course Code	MENE6001				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

- 1. To impart knowledge in the area of numerical integration and Calculus
- 2. Working principle knowledge of energy meter
- 3. Brief knowledge about various flow parameters
- 4. Knowledge about handling the instruments and how to operate in filed
- 5. The role of instruments in different engineering applications.

Course Outcomes

CO1	Study the devices used to measure various forms of energy.
CO2	Understand the basic working principle of energy measuring devices
CO3	Knowledge of various flow parameters
CO4	Handling efficiency of instruments and problem solving
CO5	Technical approach of the instruments in field condition
CO6	Discuss on latest research paper.

Course Content:

Unit I: Electrical Energy Metering	9 Hours
	meters, Three Phase Energy meters, working principle, eading systems.
Unit II: Thermal Energy Metering	10 hours
RTDs, Potentiometric & Paperless Recorde	or , Flue gas analyzer, Thermometers, Thermocouples & ers, I/P Converters, Temperature Transmitters, Optical ers, Loop Powered Indicators & Isolators, BTU meters,
Unit III: Air Flow Metering	10 Hours
Air flow meters: vane (flap) type air flow i Anemometer, types and its classification, work	meters and "hot wire" and "hot film" air mass meters. king principle.
Unit IV: Gas Flow Metering	7 Hours

Types and its basic working principle, Odometer.

Unit V: Fluid Flow Metering 9 Hours

Classification of fluid flow meters based on the operating principle- Differential Pressure Flowmeters, Velocity Flow meters, Positive Displacement Flowmeters, Mass Flowmeters, Open Channel Flowmeters, Types:-Orifices, Venturies, Nozzles, Rotameters, Pitot Tubes, Calorimetrics, Turbine, Vortex, Electromagnetic, Doppler, Ultrasonic, Thermal, Coriolis

Unit VI: Discussion on Latest Research Paper 2 Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

- 1. Electrical Measurements and Measuring Instruments by A.K Sawhney
- 2. Flow measurement: practical guides for measurement and control by David W. Spitzer, Instrument Society of America.

Name of The Course	Environmental Audit & Impact Assessment				
Course Code	MENE6002				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

- 1. To teach the basic concepts of environmental audit impact assessment and policy.
- 2. To provide a critical overview of the theory and practice of EIA as operated internationally to those students who need to understand EIA
- 3. Field visit and EIA study of different field cases
- 4. How to conduct project on sustainability of environment
- 5. To teach various conventions and laws involving EIA.

Course Outcomes

CO1	Define EIA, different types of EIAs and benefits of EIA
CO2	Describe the role of EIA in sustainable development
CO3	Skill development for project planning process
CO4	Take a decision-making process in environmental clearance and public relation
CO5	Make a plan for International environmental issues and sustainable development
CO6	Discuss on latest research paper.

Course Content:

Unit I: General Aspects9 Hours
Definition of Environmental Audit (EA). Types of environmental audits. Policies and legislation relating
to environmental audits. Conducting an audit. Audit reports. Relationship between an environmental
audit and an EIA. The benefits of EA. Guidelines for EAs (General Principles, Criteria, evidence and
findings, Reporting). EA objectives, roles and responsibility. EA as environmental management tool for
small scale and large scale enterprises. EA and sustainable development. Responsibilities in conducting
EAs.
The benefits of database in EAs. Future Direction of EA
Unit II: EIA-I 10 Hours
Economic development, population growth and impact on the environment. Introduction to
Environmental Impact assessment. The history of Environmental Impact assessment (EIA). Purpose and
aims of EIA. EIA administration and practice Converging opportunities (i.e. development and
environmental protection are complimentary), environmental management and sustainable development.
Unit III: EIA-II 10 Hours

EIA in project planning and management. The costs and benefits of EIA. Introduction to the key principles and elements of EIA, core values (sustainability, integrity, utility). EIA guiding principles (e.g. participation, transparency, flexibility, etc). Introduction to the main features of the EIA system. Role of public participation stages that follow EIA Understanding of the strengths and limitations of EIA.

Unit IV: Environmental Policy I 7 Hours

Overview of the legislative and institutional characteristics essential for the support of a national EIA system. Factors that help to establish an effective national EIA system. Steps involved in establishing and modifying a national EIA system.

Unit V: Environmental Policy II 9 Hours

The level of public involvement in EIA and the relative advantages and disadvantages they offer. Techniques for communicating with the public. Consensus building and dispute resolution mechanisms. International environmental issues and sustainable development plans. International environmental laws and policies of relevance to EIA -Treaties, conventions etc.

Unit VI: Discussion on Latest Research Paper 2 Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

- 1. Canter L.W. Environmental Impact Assessment. McGraw-Hill, Inc.
- 2. Wathern P. 1995. Environmental Impact Assessment: Theory and Practice. Biddles Ltd, Guildford and King's Lynn.

Name of The Course	Design of Water and Wastewater	Treatm	nent Sy	stems	
Course Code	MENE6003				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

- 1. various water treatment processes and their designing criteria
- 2. implementation of technologies in wastewater treatment in order to make water safe to drink
- 3. to teach various options available in treatment of waste water for recycle and safe disposal
- 4. design of bioreactors for degradation of nutrients
- 5. application of wastewater treatment in field by research projects

Course Outcomes

CO1	Understand various unit operations involved in water treatment and design various water treatment units required
CO2	Planning and siting of water treatment plant
CO3	Effect of wastes disposal to water
CO4	Design of physical units for waste treatment.
C05	Design of bioreactors for biodegradation of wastewater treatment
CO6	Discuss on latest research paper.

Course Content:

Unit I: Definitions and Concepts 9 Hours

Water sources, Philosophy of water treatment, Review of water quality characteristics and potable water standards, Estimation of water quantity, Theory and design of Conventional Unit Operations used in Water Treatment: Screening, Sedimentation, Floatation, coagulation, flocculation, filtration, softening and disinfection processes.

Unit II: Theory and Design of Advanced Unit Operations used in Water Treatment 10 Hours

Membrane processes, Ion Exchange, Aeration/stripping, Precipitation, Adsorption, Oxidation-reduction and advanced oxidation processes; Water Treatment Plant Design; Selection of raw water source, Planning and siting of water treatment plant, Chemical requirement and residuals management.

Unit III: Philosophy of Wastewater Treatment 10 Hours

Philosophy of wastewater Treatment, Review of Wastewater quality parameters and discharge standards for aquatic and land disposal, Estimation of wastewater quantity; Wastewater Collection; Design of sewers and sewerage systems

Unit IV: Wastewater Disposal

7 Hours

Disposal to inland waters such as lakes reservoirs, rivers and streams, disposal to sea, disposal on Land. Wastewater treatment; Preliminary treatment, Bar-rack, Screens, Grit chamber, Equalization tank, Primary sedimentation

Unit V: Secondary Treatments 9 Hours

Aerobic processes, Anaerobic processes. Tertiary treatment, Nutrient removal, Residual management, Design; Planning and setting of Wastewater treatment plant, Chemical requirements and material balance.

Unit VI: Discussion on Latest Research Paper 2 Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

- 1. Metcalf and Eddy, M.C., "Wastewater Engineering: Treatment, Disposal and Reuse", Tata McGraw-Hill Publications, New Delhi, 2003
- 2. Benefield, L.D. Judkins J.F. and Weand B.L. (1982). Process Chemistry for Water and Wastewater Treatment, End ed., Prentice-Hall, Inc, New Jersey, USA

Name of The Course	Air Pollution & Its control				
Course Code	MENE6004				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

- The basics concept of air pollution
 Instruments of monitoring of air quality
 Technology required controlling air pollution
 Effect of air pollution on environment
 How to apply study for clean air development

Course Outcomes

CO1	Brief knowledge and experience to identify the type the source of pollutant.	
CO2	Monitoring of air quality by different instruments	
CO3	Control of air pollution by using different ECS.	
CO4	Field project on remediation of air quality	
CO5	Use of different methods for air quality improvement	
CO6	Discuss on latest research paper.	

Course Content:

Unit I: Air Pollution & Classification	9 Hours
Definition, Air Quality, Classification of Air I	Pollutants.
Unit II: Effects of Air Pollution	10 Hours
Effects of Air pollution on human, plant a sustainable development.	and animal, Air Pollution Episodes, management and
Unit III: Air pollution Monitoring	10 Hours
Collection of Gaseous Air Pollutants, Collecti CO, Oxidants and Ozone.	on of Particulate Pollutants, Measurement of SO ₂ , Nox,
Unit IV: Meteorology & Dispersion of pollu	itants 7 Hours
Wind Circulation, Lapse Rate, Stability Co dispersion.	nditions, Maximum Mixing Depths, Plume Rise and

Unit V: Emission Control System	9 Hours
Air pollution control technologies for par Electrostatic precipitators, Bag Filters, Scrub Unit VI: Discussion on Latest Resea	
	novations / start-up ideas / white papers / applications.

- 1. N.Rao& H V N Rao (2000), Air pollution, Tata McGraw Hill Publishing Ltd.
- 2. Pollution Control Technology Handbook, Second Edition" by Karl B Schnelle Jr and Russell F Dunn

Name of The Course	Energy, Instrumentation, measure	ement &	& Conti	ol Lab	
Course Code	MENE6006				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		0	0	2	1

- 1. To impart knowledge in the area of numerical integration and Calculus
- 2. Working principle knowledge of energy meter
- 3. Brief knowledge about various flow parameters
- 4. Knowledge about handling the instruments and how to operate in filed
- 5. The role of instruments in different engineering applications.

Course Outcomes

CO1	Study the devices used to measure various forms of energy.
CO2	Understand the basic working principle of energy measuring devices
CO3	Knowledge of various flow parameters
CO4	Handling efficiency of instruments and problem solving
CO5	Technical approach of the instruments in field condition

Course Content:

- 1. Determination of electrical Energy in One –Phase & Three Phase energy meters,
- 2. Fuel efficiency by Flue gas analyzer,
- 3. Fuel efficiency Thermometers,
- 4. Determine the difference in potential by Potentiometric
- 5. Measurement of temperature and converts into current signals by Temperature Transmitters
- 6. Determination of intensity of light by Optical Pyrometer
- 7. Measurement of air flow in Air flow meters
- 8. Determination of speed of airflow in Anemometer
- 9. Measurement of volumetric flow rate of fluid by Rotameter
- 10. Determination fluid flow velocity by Pitot Tube
- 11. Measurement of mass flow rate by Mass Flow meters
- 12. Determination of velocity of water by Open Channel Flow meters

- 1. A.K Sawhney, Electrical Measurements and Measuring Instruments.
- 2. David W. Spitzer, Flow measurement: practical guides for measurement and control, Instrument Society of America.

Name of The Course	Project Phase (I)				
Course Code	MENE7002				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		0	0	0	5

- 1. To provide a comprehensive understanding of the concepts and methodologies for project identification, project preparation, project evaluation and project financing
- 2. To make the students understand the project cycle and their wide socio-economic and environmental impacts
- 3. To make the students learn how to evaluate a project in view of global concern about sustainable development of energy and environment projects
- 4. To make students to develop lab scaled experimental setup to addressed environmental problems
- 5. To help students to carryout case studies on various environmental problems

Course Outcomes

CO1	Identify various energy and environmental features of a project
CO2	Small projects for environmental development and sustainability
CO3	Develop a project with suitable technology, and environmental impacts
CO4	Solve complex environmental problems by different tools and techniques
CO5	Carry out techno-economic evaluation of energy projects with environmental considerations

Interna	al Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
	50	-	50	100

Students shall carry out research work

Name of The Course	Project Phase (II)				
Course Code	MENE8001				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		0	0	0	15

1. To provide a comprehensive understanding of the concepts and methodologies for project identification, project preparation, project evaluation and project financing

2. To make the student understand the project cycle and their wide socio-economic and environmental impacts

3. To make the student learn how to evaluate a project in view of global concern about sustainable development of energy and environment projects

Course Outcomes

CO1	Identification various energy and environmental features of a project
CO2	Laboratory and field based study
CO3	Small projects for environmental development and sustainability
CO4	Develop a project with suitable technology, and environmental impacts
CO5	Solve complex environmental problems by different tools and techniques

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

Course Content:

Students shall carry out research work

Name of The Course	Seminar				
Course Code	MENE6005				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		0	0	0	1

1. To prepare students to compete for a successful career in Energy & Environmental Engineering profession through global education standards.

2. To enable the students to aptly apply their acquired knowledge in basic sciences and mathematics in solving Energy & Environmental Engineering problems.

3. To produce skillful graduates to analyze, design and develop a system/component/ process for the required needs under the realistic constraints.

4. To train the students to approach ethically any multidisciplinary engineering challenges with economic, environmental and social contexts

5. To create an awareness among the students about the need for lifelong learning to succeed in their professional career

Course Outcomes

CO1	To demonstrate the ability to identify, formulate and solve engineering problems.
CO2	To demonstrate the ability to design and conduct experiments, analyze and interpret data.
CO3	The ability to visualize and work on laboratory and multi-disciplinary tasks.
CO4	To demonstrate the skills to use modern engineering tools, software's and equipment to analyze problems.
CO5	To demonstrate the knowledge of professional, ethical responsibilities and in both verbal
	and written form.

Course Content:

Unit I: Student Presentation	2 Hours
Each student will present one paper d	uring the term
Unit II: Class Evaluation	2 Hours
Each week each student is asked to w	rite a short evaluation of one of the papers being presented
Unit III: Class Discussion	2Hours
Discuss the papers – expose the flaws	, analyse the writing, what was the impact?

Unit IV: Assessment	2Hours
Short review submitted each week (you may work in	pairs)
Longer review of the paper you presented	
Unit V: Key Skills	2 Hours
Summarise	
Evaluate	
Identify the important questions	
Understand the context	

Elective Syllabus

Name of The Course	Solar Energy Technology				
Course Code	MENE6013				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

- 1. To impart the knowledge in the area of solar energy
- 2. Solar energy and the effective utilization to improve energy management
- 3. To understand the importance of economic dispatch and unit commitment problem
- 4. Solar energy using different technologies.
- 5. Design of liquid and air heaters

Course Outcomes

CO1	Atmospheric attenuation
CO2	Fixing of Solar energy
CO3	Application of energy into daily life activities
CO4	Find out heat removal rate
CO5	Design of active systems for liquid and air heaters
CO6	Discuss on latest research paper.

Course Content:

Unit I: Solar Radiation	9 hours
Terrestrial radiation-radiation or horizontal radiation and inclined s components of the radiations- so	elationship- extra-terrestrial radiation.– Atmospheric attenuation – n a horizontal surfaces and inclined planes relations between urfaces – relations between monthly, daily and hourly radiation and olar charts – Critical radiation-Measurement of global, direct and meter, pyrano meter, pyro geo meter, net pyradiometer-sunshine

Unit II: Solar Collectors – Flat Plate Collecton 10 hours

Design considerations – classification- Flat plate collectors- air heating collectors liquid heating – Temperature distributions- Heat removal rate- Useful energy gain – Losses in the collectors-for efficiency of flat plate collectors – selective surfaces – tubular solar energy collectors analysis of concentric tube collector – testing of flat plate collectors

Unit III: Concentric Solar Collectors and Thermal Application 10 hours

Concentric collectors-Limits to concentration – concentrator mounting – tracking mechanism - performance analysis focusing solar concentrators: Heliostats. Solar powered absorption A/C system (Ammonia/water) solar water pump, solar chimney, solar drier, solar dehumidifier, solar still, solar cooker.

Unit IV: Simulation and Energy Storage 7 hours

Simulation in Solar Process Design- TRANSYS- Design of active systems- f chart methods for liquid and air heaters- phi bar, of chart method - sensible, latent heat and thermo-chemical storage-pebble bed etc. materials for phase change- Glauber's salt organic compounds -solar ponds.

Unit V: Solar PV System

9 Hours

Photo- voltaic cell – characteristics-maximum power- tracking-cell arrays-power electric circuits for output of solar panels--inverters-batteries-charge regulators, Construction concepts.

Unit VI: Discussion on Latest Research Paper 2 Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

- 1. DuffieJ.A and Beckman, W.A., "Solar Engineering of Thermal Processes", 2nd Edition, John Wiley& Sons Inc., Newyork, -1991
- 2. G.N. Tiwari. "Solar Energy: Fundamentals, Design, Modelling and Applications", Third Reprint, Narosa Publishing House, New Delhi-2006

Name of The Course	Hydrogen Fuel Cells				
Course Code	MENE6015				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

- 1. Importance of hydrogen as a future energy carrier
- 2. How to storage compressed gas
- 3. Fuel cell classification
- 4. Different parameters of fuel cell
- 5. Design of fuel cell

Course Outcomes

CO1	Knowledge about hydrogen energy
CO2	Able to get techniques to store compressed gas
CO3	Knowledge about various types of fuel cell
CO4	Find out the energy transferred and effect of various parameters
CO5	Design of fuel cell
CO6	Discuss on latest research paper.

Course Content:

Unit I: Hydrogen as future fuel9 Hours
Importance of hydrogen as a future energy carrier –Thermodynamic and thermo physical properties-
Chemical production of hydrogen-Steam reforming, thermal decomposition etc Purification -
Desulfurization, removal of CO ₂ , CO, etc Electrolytic hydrogen production- Electrolyzer
configurations -Thermolytic hydrogen production - Direct dissociation of water, chemical
dissociation of water, photolytic hydrogen production, photo-biological hydrogen production
Unit II: Alternate fuels 10 Hours
Compressed gas storage-Cryogenic liquid storage-Solid state storage–Adsorption and chemical compounds, Metal hydrides, hydride heat pumps and compressors
Unit III: principles of Fuel Cells10 hours
Fuel cells classification – operating temperatures, state of electrolyte, type of fuel, chemical nature of electrolyte. water pump, solar chimney, solar drier, solar dehumidifier, solar still, solar cooker.
Unit IV: Different Fuel cells7 hours

Polymer Electrolyte Membrane Fuel Cells (PEMFC) – Alkaline Fuel Cells (AFC)-Phosphoric Acid Fuel Cells (PAFC)- Direct Methanol Fuel Cells (DMFC)-Molten Carbonate Fuel Cells (MCFC)-Solid Oxide Fuel Cells (SOFC)

Unit V: Applications of Fuel cells	9 hours
Stationary systems, automotive systems,	portable fuel cells, small (less than 1 kW) fuel cells

Unit VI: Discussion on Latest Research Paper 2 Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

- 1. Aldo V. da Rosa (2005), 'Fundamentals of Renewable Energy Processes', Elsevier Academic Press.
- 2. Gregor Hogen Ed. (2003), 'Fuel Cell Technology Handbook', CRC Press.

Name of The Course	Energy Environment & Climate Change				
Course Code	MENE6019				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

- 1. To provide knowledge related to the broad field of environmental risk assessment
- 2. Steps involved in the risk assessment process, including statistical characterization of observed data
- 3. Knowledge about tools that can be used in defining environmental risks, particularly as related to human health.
- 4. To develop practical skills in disaster mitigation, planning, response and post disaster rehabilitation, particularly related to health and public health.
- 5. To provide knowledge related to cyber and important legal provision for sustainable development advancement.

Course Outcomes

CO1	To gain knowledge related to the broad field of environmental risk assessment
CO2	Statistical characterization of field data
CO3	Use of tools for environmental risks, particularly as related to human health
CO4	To apply biotechnological concept and tools for green production technologies
CO5	Gain knowledge on eco-sustainable waste management ensuring sustainable development
CO6	Discuss on latest research paper.

Course Content:

Unit I: Energy Sources 9 Hours
Definition, Modules, Forms of Energy, Power, Origin of Fossil fuels, World and Indian Resources of
Coal, Oil, Natural gas, Nuclear, Geothermal, Renewable Energy potential : Solar Energy, Wind
Energy, Bio-Energy, Hydro, Tidal, Ocean, Nuclear Energy, Nuclear Fission and Fusion, Geothermal
Energy.
Unit II: Energy Scenario 10 Hours
Global Energy Scenario: Energy consumption pattern in various sectors, Impact on economy, India's
Energy Scenario, Urban and Rural energy consumption patterns, Impact of Energy on Development,
Energy Infra structure in India
Unit III: Impact of Energy project on Environment 10 Hours

Overview of global environmental problems, Environmental degradation due to Energy production and use, Pollution due to thermal power stations, Environmental aspects of Wind Energy Farms, Environmental aspects of Nuclear power generation, Nuclear waste disposal, Impact of Hydro power

generation on Ecology and Environment, Guidelines for Environmental impact assessment (EIA) of Energy Projects

Unit IV: Climate Change Concern 7 Hours		
Green House Gas Emissions, Depletion of Ozone layer, Global Warming, Climate Change Concerns, Climate Change in India, Kyoto protocol, Clean Development Mechanism [CDM], Carbon Fund Concept of Carbon credit		
Unit V: Climate Change Policy Issues9 Hours		
Impact of Climate Change on Glaciers, Rivers and Water Resources, Climate Change Policy Issues in Himalayas, International Status of Climate Change Policies, Indian Action Plan on Climate Change Unit VI: Discussion on Latest Research Paper 2 Hours		

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

- 1. A K De (2001), Environmental Concerns, New Age Publications Pvt Ltd.
- 2. P.S.R. Murthy(1994), Power System Operation and Control, Tata McGraw-Hill Publication

Name of The Course	Bio-Energy Technologies				
Course Code	MENE6027				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

- 1. Bio-energy and its mechanism
- 2. Different processes for production of bioenergy
- 3. To under different techniques and tools
- Bioenergy production from different solid wastes
 Energy Consumption and Cost Environmental Aspects

Course Outcomes

CO1	Solid waste management by bioenergy
CO2	Different processes used for biodegradation of solid waste and production of bioenergy
CO3	The industrial applications of Bio-Energy.
CO4	Environmental aspect of Bio-Energy
CO5	Energy Consumption and Cost - Environmental Aspects
CO6	Discuss on latest research paper.

Course Content:

Unit I:	Bio-energy	9 hours	
Bio Ener	gy - Bio Conversi	ion Mechanism - Utilization of Photosynthate	
Unit II:	Bio-energy Extr	action Principles 10 hours	
Producti	on - Fermentation	asification and Liquefaction - Biological Conversion - Me - Anaerobic Digestion Biodegradation and Biodegradabil om Algae – Biological Pathways	
Unit III:	Sources of Bior	mass 10 hours	
U		d Classification - Biomass Production from different Or ogas Yield - Biogas production from Dry Dung Cakes	rganic Wastes -
Unit IV:	Bio-energy Syst	tems 7 hours	
-		ction - Wood Gasifier System, Operation of Spark Ignition Wood Gas. Operation and Maintenance	on and

Unit V: Eco	nomics of Bio-energy 9 hours
0.	tives and Cost Effectiveness - History of Energy Consumption and Cost - al Aspects of Bio-energy Conversion.
Unit VI:	Discussion on Latest Research Paper 2 Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

- 1. R. C. Maheswari (1997), 'Bio Energy for Rural Energisation' Concepts Publication.
- 2. Boyles (1984), 'Bio Energy Technology Thermodynamics and costs', Ellis Hoknood, Chichester.

Name of The Course	Energy Efficient Buildings				
Course Code	MENE6029				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

- 1. Importance of Energy-Efficient Buildings within the context of Energy issues in the 21st century.
- 2. The concept of Energy efficiency, Renewable sources of energy and their effective adaptation in green buildings
- 3. Understanding of Building Form and Fabric, Infiltration, ventilation, Lighting, cooling and water conservation.
- 4. The importance of Environmental Management as well as Environmental Impact Assessment methods in Energy efficient buildings.
- 5. To help students understanding energy flow and its conservation.

Course Outcomes

CO1	Understand why buildings should be made energy efficient.
CO2	Have a fuller grasp on Renewable Energy mechanisms such as Passive Solar heating and collection, Photovoltaics.
CO3	Ground source heat pumps, and their adaption to green building concepts.
CO4	Understand the concepts of Site and Climate, Building Form, Building Fabric, Infiltration and ventilation, Lighting, Heating, Cooling, Energy Management and water conservation.
CO5	Environmental Impact Assessment study for Energy Efficient Buildings. They shall be equipped with the associated cutting-edge management strategies.
CO6	Discuss on latest research paper.

Course Content:

Unit II: Renewable Energy, Site and Climate 10 hours

Renewable Energy sources that can be used in Green Buildings – Solar energy, Passive Solar Heating, Passive Solar collection, Wind and other renewables. A passive solar strategy, Photo-voltaics, Climate and Energy, Macro and Microclimate. Indian Examples.

Unit III: Building Form and Fabric

Building Form – Surface area and Fabric Heat Loss, utilizing natural energy, Internal Planning, Grouping of buildings. Building Fabrics- Windows and doors, Floors, Walls, Masonry, Ecological walling systems, Thermal Properties of construction material.

10 hours

Unit IV: Infiltration, Ventilation, Lighting, Cooling and Water Conservation 7 hours

Infiltration and ventilation, Natural ventilation in commercial buildings, passive cooling, modeling air flow and ventilation, Concepts of daylight factors and day lighting, daylight assessment, artificial lighting, New light sources. Cooling buildings, passive cooling, and mechanical cooling. Water conservation- taps, toilets and urinals, novel systems, collection and utilization of rain water.

Unit V: Energy Awareness

9 hours

Energy awareness, monitoring energy consumption, Building Environmental Assessment - environmental criteria - assessment methods - assessment tools (e.g. LEED). Ecohomes, Sustainable architecture and urban design – principles of environmental architecture. Benefits of green buildings – Energy Conservation Building code - NBC

Unit VI: Discussion on Latest Research Paper 2 Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

- 1. William T. Meyer., Energy Economics and Building Design., New York: McGraw-Hill, Inc
- 2. Public Technology, Inc. (1996). Sustainable Building Technical Manual: Green Building Design, Construction, and Operations. Public Technology, Inc., Washington, DC.

Name of The Course	Solid Waste management				
Course Code	MENE6032				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

- 1. To gain insight into collection, transfer and transport of municipal solid waste
- 2. Understand the design and operation of municipal solid waste landfill
- 3. Understand the design and operation of resource recovery facility
- 4. Understand the design and operation of waste to energy facility
- 5. Understand the effect of waste management on environmental sustainability

Course Outcomes

CO1	Understand solid waste and its composition
CO2	Understand method solid waste collection and transportation
CO3	Understand various processes involved in solid waste collection, segregation and transportation.
CO4	Design solid waste disposal facility.
CO5	Understand the identification of hazardous wastes
CO6	Discuss on latest research paper.

Course Content:

Unit I:	9 Hours
legislation, monitoring	nal foundation: Definition of solid waste-waste generation-major responsibilities, sources and types of solid waste – sampling and ermination of composition of MSW-storage and handling of solid in waste composition.
Unit II:	10 Hours
Waste collection system	ns, analysis of collection system–alternative techniques for collection er operation, transport means and methods, transfer station types and

Unit III: Process of Solid Waste and Energy recovery 10 Hours

Unit operations for separation and processing, Materials Recovery facilities, Waste transformation through combustion and aerobic composting, anaerobic methods for materials recovery and treatment – Energy recovery – Incinerators

Unit IV: Disposal of Solid Wastes

7 Hours

Land farming, deep well injections. Landfills: Design and operation including: site selection, Geo-environmental investigations, engineered sites, liners and covers, leachate control and treatment, gas recovery and control, including utilization of recovered gas (energy), and landfill monitoring and reclamation,, Requirements and technical solution, designated waste landfill remediation–Integrated waste management facilities. TCLP tests and leachate studies. Economics of the on-site v/s offsite waste management options. Natural attenuation process and its mechanisms.

Unit V: Household Hazardous Waste Management 9 Hours

Design practices of solid wastes. Definition and identification of hazardous wastes-sources and characteristics – hazardous wastes in Municipal Waste – Hazardous waste regulations – minimization of Hazardous Waste-compatibility, handling and storage of hazardous waste-collection and transport. Regulatory requirements for identification, characterization and disposal of hazardous, non-hazardous waste.

Unit VI: Discussion on Latest Research Paper 2 Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

- 1. George Techobanoglous et al, "Integrated Solid Waste Management", McGraw-Hill Publication, 1993.
- 2. Frank Kreith and George Tchobanoglous, 'Handbook of Solid Waste Management', McGraw Hill Publication

Name of The Course	Design of Wastewater Treatment & Disposal System				
Course Code	MENE6034				
Prerequisite					
Co-requisite					
Anti-requisite					
	I	L	Т	Р	С
	3	3	0	0	3

- 1. Need of advanced wastewater treatment
- 2. Process for removal nutrients
- 3. Physical and chemical methods
- 4. Economic value of environmental resources
- 5. Economics of biodiversity conservation

Course Outcomes

CO1	Know about the conventional treatment units and processes.
CO2	Role of microorganisms in wastewater treatment.
CO3	Nutrients removal by chemical and biological process
CO4	Sludge treatment, handling and disposal.
CO5	Wastewater reuse, recycling and disposal of treated effluents
CO6	Discuss on latest research paper.

Course Content:

Unit I: Introduction to Nutrient in Wastewater 9 Hours

Effects of chemical constituents in wastewater, Need of advanced wastewater treatment, Basis of process selection and development of treatment flow sheets. Membrane Bio-Reactor (MBR) applications / Removal of residual suspended solids by micro screening.

Unit II: Chemical Nutrient Removal 10 Hours

Sources and forms of Nitrogen (N) and Phosphorus (P), Processes for N and P removals. Conventional biological nitrification/ denitrification processes and their fundamentals. Sequencing Batch Reactor (SBR) and Simultaneous Nitrification – Denitrification (SND) processes for nitrogen removal. New processes for nitrogen removal: ANAMMOX, SHARON, CANON etc. Biological removal of Phosphorus- Process fundamentals and types of processes. Combined removal of N and P by biological methods.

Unit III: Economic Value of Environmental Resources 10 Hours

Nitrogen removal by physical and chemical methods-Air stripping of ammonia/Break point Chlorination/Ion –exchange. Removal of phosphorus by chemical addition

Unit IV: Concept of Total Economic Value 7 Hours

Economic value of environmental resources and environmental damage-Concept of Total Economic Value-Alternative approaches to valuation-Cost benefit analysis and discounting

Unit V: Economics of bio-diversity Conservation 9 Hours

Economics of biodiversity conservation - Valuing individual environmental damage-Concept of Total Economic Value - Policy responses at national and international levels

Unit VI: Discussion on Latest Research Paper 2 Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

- 1. R. K. Turner, D. W. Pearceand, I. Bateman (1994), 'Environmental Economics: An Elementary Introduction', Harvester Wheat sheaft, London.
- 2. D. W. Pearceand, R. K. Turner (1990), 'Economics of Natural Resources and the Environment', Harvester Wheat sheaf, London.

Name of The Course	Urban Environmental Quality Management				
Course Code	MENE6035				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

- 1. Investigating the causes, consequences and degradation of environmental resources
- 2. Possible solutions to problems associated with degradation of environmental resources
- 3. Analyse the potential non-sustainability of certain types
- 4. Economic activities using economic analysis as a tool
- 5. To plan and to execute monitoring programmes

Course Outcomes

CO1	Have knowledge of the nature and effects of environmental pollutants and energies
CO2	Have a detailed knowledge of the techniques involved in the efficient management of the environment
CO3	Be able to measure and assess the effects of noise, air, water, terrestrial pollution and noise pollution on human activity and health
CO4	Have an awareness of the need for integrated pollution control
CO5	Have the skills to plan and to execute monitoring programmes for the detection and control of environmental pollutants, including water, air and noise terrestrial pollution
CO6	Discuss on latest research paper.

Unit I: Urbanization & Pollution	9 Hours
	Fresources by the public - Sources of Pollution to the els in major cities- Slum formation: Impact of slum on rus of slum settlements in major cities
Unit II: Air & Noise Pollution in Urban	Environment
10 H	Hours

Air Pollution Sources: Nature of air pollution in urban environment due to human activities of industrialization, effect of air pollution on urban environment. Air pollution indices for assessment of status of urban air quality. Sources of noise pollution in urban areas, effect of noise pollution on urban environment, status of noise pollution in major cities.

Unit III: Water and Land pollution in Urban Environment 10 Hours

Water Demands and Pollution in Urban areas: Nature of water pollutants and as similative capacity of natural Urban aquatic systems. Urban water quality indices-Sources of land pollution in urban areas: Impact of urban soil pollution on quality of living system– prediction of soil pollution indices.

Unit IV: Management of Urban Environment Quality 7 Hours

Land use planning-traffic management. Safe municipal water supply and planning of safe municipal water supply and drainage system-solid waste management including disposal-abatement of noise pollution – Provision of zones – regulation

Unit V: Conservation and Disaster Management 9 Hours

Natural Conservation: Planning of urbanization on ecological basis, preservation and development of green recovery areas.- Urban Disaster Management: Management of Industrial explosions, landslides, earthquakes, Floods and Management of epidemics

Unit VI: Discussion on Latest Research Paper 2 Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

- 1. Varshney, C.K. "Water Pollution and Management", Wiley Eastern Ltd., New Delhi, 1998
- 2. M. J. Suess & S. R. Craxford, "Manual on Urban Air Quality", WHO, Copenhagen

Name of The Course	Remote Sensing & GIS Applications					
Course Code	MENE6037					
Prerequisite						
Co-requisite						
Anti-requisite						
	Ι	L	Т	Р	С	
		3	0	0	3	

- 1. Basic concept of Remote Sensing
- 2. Knowledge of Geographic Information Systems with its applications.
- 3. History of development of GIS
- 4. Concepts of digital image processing
- 5. Applications of GIS and remote sensing

Course Outcomes

CO1	Basic remote sensing concepts and its characteristics
CO2	GIS and its requirements
CO3	Data management with GIS
CO4	Carry out analysis and interpretation of GIS results
CO5	Modelling through GIS
CO6	Discuss on latest research paper.

Unit I: Basic concepts of remote Sensing	g 9 Hours
1 0	troduction to remote sensing – Electromagnetic ensing systems–Plat forms–Satellite-Indian remote
Unit II: Image Processing	10 Hours
Image processing - Elements of image inte	erpretation –Concepts of digital image processing
Unit III: Basic concepts of GIS	10 Hours
Basic concepts of GIS – Introduction to GIS-Computer hardware and software	GIS-History of development of GIS- Elements of
Unit IV: Map Overlay	7 hours

Map overlay-Vector and raster data model-Mapping concept- Data storage and data base management- Development of map overlay – Overlay operation

Unit V: Applications of GIS and Remote Sensing 9 Hours

Applications of GIS and remote sensing in resource management

Unit VI: Discussion on Latest Research Paper 2 Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

- 1. A.N. Patel and Surendra Singh (1999), Remote Sensing Principles and Applications, Scientific Publisher.
- 2. A. Burrough (2000), Principle of Geographical Information Systems for Land Resources Assessment, Clarendon Press, Oxford.

Name of The Course	Application Engineering	of	Bio-Techn	ology	in	Enviro	onmental
Course Code	MENE6038						
Prerequisite							
Co-requisite							
Anti-requisite							
				L	Т	Р	С
				3	0	0	3

- 1. To introduce microbial and biotechnological concepts and theories.
- 2. To understand the biotechnological tools and their applications for environmental management.
- 3. To become familiar with the effective use of biotechnology in eco-sustainable waste management.
- 4. To understand various toxic chemicals
- 5. To understand various biotechnological technologies for environmental damages

Course Outcomes

CO1	To gain knowledge related to biology of microorganism
CO2	Environmental Management Strategies for Sustainable Development
CO3	Application of Microorganism in green technology
CO4	To address problems of toxic chemicals in environment
CO5	Gain knowledge on Biotechnological remedies for environmental damages
CO6	Discuss on latest research paper.

Course Content:

Unit I: Ecosystem9 hoursPrinciples of biology-Cell structure, types, functions and communication during developments;
Genes and development-gene expression and their regulation, regulation of cell and animal body
development; Environment and Ecosystem and its components; Energy and bio-geo-chemical
cycles; Microorganisms and Environment- microbes as functionary part of ecosystem, terrestrial
and non-terrestrial environments, marine and freshwater environments; Ecological Niche;

Unit II: Human Development and Environment

10 hours

Historical Overview of Development and Pollution, Environmental Sustainability and Biodiversity; Biotechnology, Human and environment-concepts of biotechnology, its usefulness to humankind and global environment theories and philosophy; Contradiction between economic and environment; Environmental Management Strategies for Sustainable Development

Unit III: Biotechnogy Principles

10 hours

Microbial cell and enzyme technology-adapted microorganisms, bio-removal of nutrients, microalgal biotechnology; Interaction of mixed microbial population and its applications in bio-processing of wastes, role of extracellular polymers, bioremediation of environmental problems; Concept of DNA technology, plasmid, mutation, genetically engineered microbial strains and applications of genetic engineering in environmental management.

Unit IV: Toxic Chemicals 8 hours

Problems of toxic chemicals-sources and categories, halogenated and non-halogenated chemicals, petroleum hydrocarbons, metals, human health effects caused by toxic chemical pollutions; Biodegradation of toxic pollutants, mechanisms of detoxification- oxidation reactions, dehalogenation, biotransformation of metals; Xenobiotic Compounds- types, sources and its hazards; Recalcitrance of xenobiotic compounds and leading factors; Biodegradation of xenobiotic compounds

Unit V: Biotechnological remediation 9 hours

Biotechnological remedies for environmental damages- decontamination of ground water systems, subsurface environment, reclamation concepts-bioremediation; Production of proteins, Biotransformation of waste into biofertilizers, biogas and electrical energy, affecting physical, chemical and microbiological factors, health risk, odor management, technological advances; Environmental effects and ethics of microbial technology; Biosafety; Clean Technology- concepts and applications in industrial process, clean synthesis; Farming as an engineering process.

Unit VI: Discussion on Latest Research Paper 2 Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

- 1. Benefield L.D. and Randall, C.W. (1980). Biological process design for wastewater treatment. Prentice-Hall. N.J.
- 2. Pelczar, M.J., Chan ECS and Krieg NR, Microbiology, Tata McGraw Hill Edition, New Delhi, India.

Name of The Course	Mathematical Modelling in Envi	ronment	al Engi	neering	
Course Code	MENE6040				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

- 1. The scope and extent of mathematical modelling
- 2. The basic tenets of mathematical modelling and its application to environmental Processes
- 3. Mathematical modelling techniques
- 4. Plume Rise estimation Emissions inventories
- 5. Mathematical modelling methods applied to Global Environmental Problems

Course Outcomes

CO1	Basic understanding of how mathematical models can be used to solve environmental problems
CO2	Set up material balance models for conservative and non-conservative systems
CO3	Formulate and solve Boundary value problems.
CO4	Plume Rise estimation Emissions inventories
CO5	Formulate, Set-up, and solve complex environmental Problems.
CO6	Discuss on latest research paper.

Course Content:

The origins: Formation of the Physical Environment. The evolution of the Earth's atmosphere. Quantification of the Lapse Rate. The states of stability of the atmosphere Quantification of Wind circulation: Geo-strophic winds. Necessity of mathematical models. Concentration calculations and conversions in liquids and gases. Converting ppm into micro grammes/m³ and vice-versa. Material Balance–Steady-state conservative systems-non-conservative pollutants. Mass-nergy flows and balances–specific examples in real-life environmental problems: Thermal pollution of a River

The importance of Air Pollution modelling. Modelling the Atmospheric Boundary Layermixing length, and eddy diffusion. The formulation and solution of the Gaussian Plume Model. Gaussian Dispersion Coefficients. Plume Rise estimation Emissions inventories. Point, Line and Area Sources. Simple noise quality models : Models for Road way Noise

10 Hours

Unit III: Modelling of Sulphur Dioxide in atmosphere Hours

Modelling the mass transport of Sulphur Dioxide into falling raindrops. Reaction Pathways. Mass and Charge Balance. The convective diffusion equation. Normalisation of the CDE with reaction kinetics. Modelling the Homogeneous and Heterogeneous Pathways for Ozone depletion.

Unit IV: Modelling of Greenhouse gases 7 Hours

Solar and Terrestrial Radiation. Quantifying the Green House Effect. A model for estimating the Equilibrium temperature of the Earth. Aerosol and cloud processes. The Basic tenets of Global Circulation Models for Weather Forecasting

Unit V: Modelling Biochemical Oxygen demand 9 Hours

The unusual qualities of water. Modelling Biochemical Oxygen demand (BOD). Estimating the BOD Reaction Rate Constant. The effect of Oxygen-demanding wastes on rivers. A model for De-oxygenation. The Oxygen- sag curve. Solid waste modelling: Waste to Energy. Modelling the methane potential of discards.

Unit VI: Discussion on Latest Research Paper 2 Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

- 1. Gilbert M., Master, 'Introduction to Environmental Engineering and Science', Prentice-Hall of India, New Delhi,1998
- 2. Howard S. Peavy, Donald R. Rowe, and George Tchobanoglous. 'Environmental Engineering'. McGraw-Hill Book Company, New York.1985

Name of The Course	Clean Development Mechanism	& Gree	en Tech	nologi	es
Course Code	MENE6041				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

- 1. The course is intended to teach the basics of CDM.
- 2. To become familiar with CDM processes.
- 3. To study CDM to address environmental problems
- 4. To study use of CDM in sustainable development
- 5. Case studies of various CDM of major projects

Course Outcomes

CO1	Well aware of developments in Clean Development Mechanism.
CO2	Understanding of Global Warming and Climatic changes.
CO3	Develop ecologically sustainable production and industry through developing
	the potential of all fibres.
CO4	Develop environmentally and socially friendly alternatives
CO5	Many of the deleterious practices, processes and products currently in use
CO6	Discuss on latest research paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Unit I: Principle of Clean Development 9 Hours	t Mechanism
Introduction to Climate Change and Glob & Global Warming	al Warming, International response to Climate Change
Unit II: Kyoto Protocol	10 Hours
Kyoto Protocol and its mechanism, object Amendments of Kyoto Protocol.	ctives of Kyoto protocol and details of the agreement,
Unit III: Clean Development Mechanism 10 Hours	m Process

Overview of Clean Development Mechanism, Administration and Participation, CDM, Project Cycle and Financing, Post Kyoto Negotiations and India.

Unit IV: Sustainable Development in CD 7 Hours

CDM, Sustainable Development and its Assessment, The CDM Market, Types of Major CDM Projects, Small Sectors and CDM, preparing CDM project design document (PDD) Course Project

Unit V: Case Studies on CDM Projects 9 Hours

Types of Major CDM Projects, Small Sectors and CDM, Detailed studies of CDM approved projects.

Unit VI: Discussion on Latest Research Paper 2 Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

- 1. White. I.D., Mottershead. D.N., Harrison .S.J, "Environmental Systems an introductory text", Chapman and hall ,London,1998
- 2. David A. Gottfried, Sustainable Building Technical Manual., Public Technology Inc

Name of The Course	Environmental Ecology				
Course Code	MENE6042				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

1. To establish Ecology's credibility in high environmental, ethical and quality standards of goods and services.

2. Access the market opportunity presented by the 'greenmarket'.

3. Raise consumer awareness and concern for environmental issues, and encourage their support for ecological values in consumer practices.

4. To develop affair and equitable means to link economic and environmental values

5. The development of mutually beneficial relationships with all segments of the community.

Course Outcomes

CO1	Develop legal and economic structures
CO2	Able to provide reasonable return on investment, financial or personal effort, dividends, wages and so forth.
CO3	Develop ecologically sustainable production and industry through developing the potential of all fibres.
CO4	Develop environmentally and socially friendly alternatives
CO5	Many of the deleterious practices, processes and products currently in use
CO6	Discuss on latest research paper.

Unit I: Concepts of Ecology	9 Hours				
Fundamentals of ecology, Natural ecosystems and their food chains, food webs, bioenergetics, biochemical cycles and ecological succession, deoxygeneation nutrient enrichment					
Unit II: Bio Diversity	10 Hours				
Biological diversity and its importance, reduction in biological diversity by human activities, classes and general effects of physical and Biological interaction with pollutants, lethal and sub-lethal effects.					
Unit III: Ecosystem Ecology	10 Hours				
Ecosystems responses to deoxygeneation nutrient enrichment, pesticides, hydrocarbons, metal and salts, thermal pollution, suspended solids and silt.					
Unit IV: Community Ecology	7 Hours				

Principles of population and community ecology-concepts of systems and models-building and analysis

of models-environmental systems, structures and interaction between coastal aeolian, glacial, fluvial, weathering, soil and detrital systems.

Unit V: Integration Ecological Principles 9 Hours

Integration of classical, agro and restoration ecological principle sand methods, Bio-monitoring and its role in the evaluation of aquatic ecosystem, rehabilitation of ecosystem through ecological engineering principles

Unit VI: Discussion on Latest Research Paper 2 Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

- 1. Odum. E. P, "Fundamentals of ecology", W.B. Sanders, Philadelphia, 2002
- 2. White. I.D., Mottershead. D.N., Harrison .S.J, "Environmental Systems an introductory text", Chapman and hall, London, 1998.

Name of The Course	Environmental Economics, Legislation and Management				
Course Code	MENE6046				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

- 1. To make the student investigating the causes, consequences
- 2. possible solutions to problems associated with degradation of environmental resources
- 3. Analyse the potential non-sustainability of certain types of economic activities using economic analysis as a tool.
- 4. The economic implications of alternative to pollution
- 5. Alternative methods for valuing environmental resources and environmental damage

Course Outcomes

CO1	The economic significance and the economic causes of environmental degradation, including loss of diversity		
CO2	The extent to which market based mechanisms might provide a solution to the environmental degradation problem in the absence of overt intervention		
CO3	The economic implications of alternative 'intervention' approaches to pollution management, including the use of charges, subsidies and market permits.		
CO4	Alternative methods for valuing environmental resources and environmental damage		
CO5	The economic consequences of policy instrument for biodiversity conservation		
CO6	Discuss on latest research paper.		

Course Content:

Unit I: Introduction to Sustainable Development 9 Hours

Introduction to sustainable development -Economy-Environment inter-linkages -Meaning of sustainable development- Limits to growth and the environmental Kuznets curve –The sustainability debate- Issues of energy and the economics of energy – Non-renewable energy, scarcity, optimal resources, back stop technology, property research, externalities, and the conversion of uncertainty

Unit II: Economic Significance

10 Hours

Economic significance and causes of environmental degradation - The concepts of policy failure, externality and market failure - Economic analysis of environmental degradation - Equimarginal principle.

Unit III: Economics of Pollution 10 Hours	
---	--

Economics of Pollution - Economics of optimal pollution, regulation, monitoring and enforcement - Managing pollution using existing markets: Bargaining solutions - Managing pollution through market intervention: Taxes, subsidies and permits.

Unit IV: Economic Value of Environmental Resources 7 Hours

Economic value of environmental resources and environmental damage-Concept of Total Economic Value-Alternative approaches to valuation-Cost benefit analysis and discounting

Unit V: Economics of bio-diversity Conservation 9 Hours

Economics of biodiversity conservation - Valuing individual species and diversity of species - Policy responses at national and international levels

Unit VI: Discussion on Latest Research Paper 2 Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

- **1.** D.W. Pearce and R.K. Turner (1990), Economics of Natural Resources and the Environment, Harvester Wheatsheaf, London.
- **2.** R.K.Turner, D.W.Pearce and I. Bateman (1994), Environmental Economics:AnElementaryIntroduction, Harvester Wheatsheaft, London.