

M.Tech – Power Systems and Engineering <u>Vision and Mission of the University</u>

Vision

To be known globally for value-based education, research, creativity and innovation"

Mission

- Establish state-of-the-art facilities for world class education and research.
- Collaborate with industry and society to align the curriculum,
- Involve in societal outreach programs to identify concerns and provide sustainable ethical solutions.
- Encourage life-long learning and team-based problem solving through an enabling environment.

Vision and Mission of the Department

Vision

To be known globally as a premier Department offering value-based education in Electrical

Engineering through interdisciplinary research and innovation.

Mission

- To provide high quality education in the field of *Electrical Engineering*.
- Establish state-of-the-art facilities for design and simulation.
- To provide effective solution to the industries in Energy and allied areas through research and consultancy.
- Immunize the students with knowledge and experience in their field of specialization to contribute in the making of professional leaders.

Program Outcomes

PO1	Investigation and development of the solution	An ability to independently carry out research /investigation and development work to solve practical problems
PO2	Technical report/document	An ability to write and present a substantial technical report/document

Dept. of Electrical, Electronics & Comm. Engg. Galgotias University

SOENG/DEECE/M. Tech/HR

PO3	Engineering Knowledge	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program
PO4	Individual and team work	An ability to function effectively as an individual or as a member or leader in a team
PO5	Life-long Learning	An ability to keep abreast with state of art technologies through lifelong learning

Program Educational Objectives

PEO1: Post graduates will demonstrate their knowledge in the field of Power System designing and allied engineering.

PEO2: Post graduates will contribute to interdisciplinary research with the use of modern tools & emerging technologies.

PEO3: Post graduates will become successful leaders through effective project management and contribute to the growth & development of the organization and society.

PEO4: The post graduates will be involved in promoting professional and societal activities.

Program Specific Outcome

PSO1: Demonstrate their knowledge in analysis and design of industrial drives for utilizing renewable energy sources.

MDSE1501	Person Sector Occurries and Control L T P C
MPSE1501	Power System Operation and Control 3 0 0 3
Version No.	1.0
Prerequisite	Power System Engineering
Objectives	 To have an overview of power system operation and control.
	2. To model power - frequency dynamics and to design power-frequency controllers.
	 To model reactive power - voltage interaction and the control actions to be implemented for maintaining voltage.

Sample Course Outcomes

Dept. of Electrical, Electronics & Comm. Engg. Galgotias University

SOENGY DEECE M. Tech /8/18

0	profile against varying system load.
Course Outcome	1. Identify various load driving parameters and review various forecasting methods for efficient power system operation.
	2. Analyze the relationship between various power system variables in terms of mathematical modelling.
	3. Model the steady state and dynamic performance of power system control.
	4. Apply the knowledge of Unit Commitment and economic Dispatch to
	numerical problems based on real time situations.
	5. Explain various functional aspects of SCADA/ECC along with various operating states of power system.
Module I	Introduction
System load – variation, loa factor, diversity factor, load	d characteristics – load curves and load-duration curves, load forecasting, simple techniques of forecasting, basics of power
	l, reserve margin, load-frequency control, voltage control.
system operation and contro Module II	l, reserve margin, load-frequency control, voltage control. Real Power - Frequency Control
Module II Speed governing mechanism area concept, LFC control of economic dispatch control w uncontrolled case, tie line w	I, reserve margin, load-frequency control, voltage control. Real Power - Frequency Control n and modelling, speed-load characteristics, load sharing, control f a single-area system, static and dynamic analysis, integration of with LFC, two-area system – modelling – static analysis of ith frequency bias control of two-area system.
system operation and contro Module II Speed governing mechanism area concept, LFC control of economic dispatch control w uncontrolled case, tie line w Module III	I, reserve margin, load-frequency control, voltage control. Real Power - Frequency Control n and modelling, speed-load characteristics, load sharing, control f a single-area system, static and dynamic analysis, integration of vith LFC, two-area system – modelling – static analysis of ith frequency bias control of two-area system. Reactive Power – Voltage Control
Module II Speed governing mechanism area concept, LFC control or economic dispatch control w uncontrolled case, tie line w Module III Reactive power control, exc stability compensation, gene voltage, power and reactive	I, reserve margin, load-frequency control, voltage control. Real Power - Frequency Control n and modelling, speed-load characteristics, load sharing, control f a single-area system, static and dynamic analysis, integration of with LFC, two-area system – modelling – static analysis of ith frequency bias control of two-area system.
Module II Speed governing mechanism area concept, LFC control of economic dispatch control w uncontrolled case, tie line w Module III Reactive power control, exc stability compensation, gene voltage, power and reactive ransformers, tap setting of C	I, reserve margin, load-frequency control, voltage control. Real Power - Frequency Control n and modelling, speed-load characteristics, load sharing, control f a single-area system, static and dynamic analysis, integration of with LFC, two-area system – modelling – static analysis of ith frequency bias control of two-area system. Reactive Power – Voltage Control itation systems – modelling, static and dynamic analysis, pration and absorption of reactive power, relation between power at a node, method of voltage control, tap changing
Module II Speed governing mechanism area concept, LFC control of economic dispatch control w uncontrolled case, tie line w Module III Reactive power control, exc stability compensation, gene voltage, power and reactive ransformers, tap setting of C Module IV Economic dispatch problem equations, solution by direct constraints, solution method upproach (Numerical problem	I, reserve margin, load-frequency control, voltage control. Real Power - Frequency Control n and modelling, speed-load characteristics, load sharing, control f a single-area system, static and dynamic analysis, integration of with LFC, two-area system – modelling – static analysis of ith frequency bias control of two-area system. Reactive Power – Voltage Control itation systems – modelling, static and dynamic analysis, eration and absorption of reactive power, relation between power at a node, method of voltage control, tap changing DLTC transformer and MVAR injection of switched capacitors.
System operation and contro Module II Speed governing mechanism area concept, LFC control of economic dispatch control w uncontrolled case, tie line w Module III Reactive power control, excit stability compensation, gene voltage, power and reactive ransformers, tap setting of C Module IV Economic dispatch problem equations, solution by direct constraints, solution methods	I, reserve margin, load-frequency control, voltage control. Real Power - Frequency Control n and modelling, speed-load characteristics, load sharing, control f a single-area system, static and dynamic analysis, integration of with LFC, two-area system – modelling – static analysis of ith frequency bias control of two-area system. Reactive Power – Voltage Control itation systems – modelling, static and dynamic analysis, power at a node, method of voltage control, tap changing DLTC transformer and MVAR injection of switched capacitors. Economic Load Dispatch – cost of generation, incremental cost curve, co-ordination method and λ- iteration method, unit Commitment problem – s – Priority-list methods – forward dynamic programming

M (

Head Dept. of Electronics & Comm. Engg.

SOENG DEECE M. Tech of 18

security analysis and control, operating states (Normal, alert, emergency, in-extremis and restorative).

Reference Books

- 1. Allen. J. Wood and Bruce F. Wollenberg, "Power Generation, Operation and Control", John Wiley & Sons, Inc., 2003.
- 2. D.P. Kothari and I.J. Nagrath, "Modern Power System Analysis", Third Edition, Tata McGraw Hill Publishing Company Limited, New Delhi, 2003.
- Chakrabarti & Halder, "Power System Analysis: Operation and Control", PHI, 2004 Edition.
- 4. L.L. Grigsby, "The Electric Power Engineering, Hand Book", CRC Press & IEEE Press, 2001.
- 5. Olle. I. Elgerd, "Electric Energy Systems theory: An introduction", Tata McGraw Hill Publishing Company Ltd. New Delhi, Second Edition 2003.

Dent Dept. of Electrical, Electronics & Comm. Engg. Galgotias University". Engg.

113:13

GA *

SOENG DEECE M. Tech 10/18

(Established under Galgotias University Uttar Pradesh Act No. 14 of 2011)

M.Tech - Power Systems and Engineering

Program Outcomes

PO1	Investigation and	An ability to independently carry out research /investigation and
	development of the	development work to solve practical problems
	solution	
PO2	Technical	An ability to write and present a substantial technical report/document
	report/document	
PO3	Engineering	Students should be able to demonstrate a degree of mastery over the
	Knowledge	area as per the specialization of the program. The mastery should be at
		a level higher than the requirements in the appropriate bachelor
		program
PO4	Individual and team	An ability to function effectively as an individual or as a member or
	work	leader in a team
PO5	Life-long Learning	An ability to keep abreast with state of art technologies through lifelong
		learning

Program Educational Objectives

PEO1: Post graduates will demonstrate their knowledge in the field of Power System designing and allied engineering.

PEO2: Post graduates will contribute to interdisciplinary research with the use of modern tools & emerging technologies.

PEO3: Post graduates will become successful leaders through effective project management and contribute to the growth & development of the organization and society.

PEO4: The post graduates will be involved in promoting professional and societal activities.

Program Specific Outcome

PSO1: Demonstrate their knowledge in analysis and design of industrial drives for utilizing renewable energy sources.

Sample Course Outcomes

MPSE1501	Power System Operation and Control	L	Т	P	C
MI SLISUI	Tower System Operation and Control	3	0	0	3
Version No.	1.0			1	
Prerequisite	Power System Engineering				
Objectives	1. To have an overview of power system operation	n and cont	rol.		
	2. To model power - frequency dynamics and to d				

Dept. of File

Head Comm. Engg.

SOENG/DEECE/M. Tech/16/18

	frequency controllers.
	3. To model reactive power - voltage interaction and the control actions
	to be implemented for maintaining voltage profile against varying system load.
Course Outcome	1. Identify various load driving parameters and review various
	forecasting methods for efficient power system operation.
	2. Analyze the relationship between various power system variables in
	terms of mathematical modelling.
	3. Model the steady state and dynamic performance of power system
	control.
	4. Apply the knowledge of Unit Commitment and economic Dispatch to
	numerical problems based on real time situations.
	5. Explain various functional aspects of SCADA/ECC along with
	various operating states of power system.
Module I	Introduction
System load - vari	ation, load characteristics – load curves and load-duration curves, load
factor diversity fa	ctor, load forecasting, simple techniques of forecasting, basics of power
system operation a	and control, reserve margin, load-frequency control, voltage control.
Module II	Real Power - Frequency Control
Speed governing r	nechanism and modelling, speed-load characteristics, load sharing, control
area concept. LFC	control of a single-area system, static and dynamic analysis, integration of
economic dispatch	n control with LFC, two-area system - modelling - static analysis of
uncontrolled case	tie line with frequency bias control of two-area system.
Module III	Reactive Power – Voltage Control
Reactive power co	ontrol, excitation systems – modelling, static and dynamic analysis,
stability company	ation, generation and absorption of reactive power, relation between
stability compensa	d reactive power at a node, method of voltage control, tap changing
voltage, power an	setting of OLTC transformer and MVAR injection of switched capacitors.
	Schille of OLIC hansformer and the terry
	Economic Load Dispatch
Module IV	Economic Load Dispatch
Economic dispate	Economic Load Dispatch
Economic dispate	Economic Load Dispatch th problem – cost of generation, incremental cost curve, co-ordination on by direct method and λ - iteration method, unit Commitment problem –
Economic dispate equations, solutio	Economic Load Dispatch th problem – cost of generation, incremental cost curve, co-ordination on by direct method and λ - iteration method, unit Commitment problem – tion methods – Priority-list methods – forward dynamic programming
Economic dispate equations, solutio constraints, soluti approach (Numer	Economic Load Dispatch th problem – cost of generation, incremental cost curve, co-ordination on by direct method and λ - iteration method, unit Commitment problem –
Economic dispate equations, solutio	Economic Load Dispatch th problem – cost of generation, incremental cost curve, co-ordination on by direct method and λ - iteration method, unit Commitment problem – ion methods – Priority-list methods – forward dynamic programming ical problems only in priority-list method using full-load average
Economic dispate equations, solutio constraints, soluti approach (Numer production cost).	Economic Load Dispatchth problem – cost of generation, incremental cost curve, co-ordinationon by direct method and λ - iteration method, unit Commitment problem –ion methods – Priority-list methods – forward dynamic programmingrical problems only in priority-list method using full-load averageComputer control of power systems
Economic dispate equations, solutio constraints, soluti approach (Numer production cost). Module V	Economic Load Dispatch th problem – cost of generation, incremental cost curve, co-ordination on by direct method and λ- iteration method, unit Commitment problem – ion methods – Priority-list methods – forward dynamic programming rical problems only in priority-list method using full-load average Computer control of power systems r control of power systems, concept of energy control centre (or) load
Economic dispate equations, solutio constraints, soluti approach (Numer production cost). Module V Need of compute dispatch centre at	Economic Load Dispatch Eh problem – cost of generation, incremental cost curve, co-ordination on by direct method and λ- iteration method, unit Commitment problem – ion methods – Priority-list methods – forward dynamic programming rical problems only in priority-list method using full-load average Computer control of power systems r control of power systems, concept of energy control centre (or) load and the functions, system monitoring, data acquisition and control, system
Economic dispate equations, solutio constraints, solutio approach (Numer production cost). Module V Need of compute dispatch centre an bordware configu	Economic Load Dispatch th problem – cost of generation, incremental cost curve, co-ordination on by direct method and λ- iteration method, unit Commitment problem – ion methods – Priority-list methods – forward dynamic programming rical problems only in priority-list method using full-load average Computer control of power systems r control of power systems, concept of energy control centre (or) load nd the functions, system monitoring, data acquisition and control, system wration SCADA and EMS functions, network topology, state estimation,
Economic dispate equations, solutio constraints, soluti approach (Numer production cost). Module V Need of compute dispatch centre an hardware configu security analysis	Economic Load Dispatch th problem – cost of generation, incremental cost curve, co-ordination on by direct method and λ- iteration method, unit Commitment problem – ion methods – Priority-list methods – forward dynamic programming rical problems only in priority-list method using full-load average Computer control of power systems r control of power systems, concept of energy control centre (or) load
Economic dispate equations, solutio constraints, solutio approach (Numer production cost). Module V Need of compute dispatch centre an hordware configu	Economic Load DispatchEh problem – cost of generation, incremental cost curve, co-ordinationIn by direct method and λ - iteration method, unit Commitment problem –Ion methods – Priority-list methods – forward dynamic programmingFical problems only in priority-list method using full-load averageComputer control of power systemsr control of power systems, concept of energy control centre (or) loadInd the functions, system monitoring, data acquisition and control, systemIration, SCADA and EMS functions, network topology, state estimation,and control, operating states (Normal, alert, emergency, in-extremis and

- Allen. J. Wood and Bruce F. Wollenberg, "Power Generation, Operation and Control", John Wiley & Sons, Inc., 2003.
- 2. D.P. Kothari and I.J. Nagrath, "Modern Power System Analysis", Third Edition, Tata McGraw Hill Publishing Company Limited, New Delhi, 2003.
- 3. Chakrabarti & Halder, "Power System Analysis: Operation and Control", PHI, 2004 Edition.
- 4. L.L. Grigsby, "The Electric Power Engineering, Hand Book", CRC Press & IEEE Press, 2001.
- Olle. I. Elgerd, "Electric Energy Systems theory: An introduction", Tata McGraw Hill Publishing Company Ltd. New Delhi, Second Edition 2003.

Head

Dept. of Electrical, Electronics & Comm. Engg. Galgotias University

SOENG/DEECE/M.Tech/18/188

