

GALGOTIAS UNIVERSITY

Syllabus of

M.TECH, VLSI

Name of School	School of Engineering Ol:
Department: _	Electrical, Electronics and Communication Engineering
Year:	2021-23

M. Tech VLSI Design Batch: 2021-2023

	First Semester					
SI. No.	Course Code	Course Title	L	т	Р	С
1	MATH5001	Advanced Numerical & Statistical Methods	3	1	0	4
2	MVLS5020	Advanced Digital System Design	3	0	0	3
3	MVLS5021	Advanced VLSI Design	3	0	0	3
4	MVLS5004	Analog Filter Design	3	0	0	3
5	MVLS5005	MOS Device Modelling	3	0	0	3
6	MVLS5019	Advanced Digital System Design Lab	0	0	2	1
7	MVLS5022	Advanced VLSI Design Lab	0	0	2	1
	Total Credits				18	

		Second Semester	•			
Sl. No.	Course code	Course Title	L	т	Р	С
1	CENG5001	Professional and Communication skills	0	0	4	2
2	MVLS5007	DSP for VLSI	3	0	0	3
3	MVLS5008	VLSI Testing and fault Tolerance	3	0	0	3
4	MVLS5009	ASIC Design and FPGAs	3	0	0	3
5	MVLS5010	Advanced Digital VLSI Design	3	0	0	3
6	MVLS5011	Low power VLSI Design	3	0	0	3
7	MVLS5012	ASIC Design Lab	0	0	2	1
8	MVLS5013	DSP for VLSI Lab	0	0	2	1

		Third Semester				
SI. No.	Course Code	Course Title	L	Т	Р	С
1	MVLS6001	Embedded System Design	3	0	0	3
2	MVLS6002	Physical Design Automation	3	0	0	3
3	MVLS6003	System on Chip Design	3	0	0	3
4	MVLS6004	Embedded System Lab	0	0	2	1
5	MVLS9997	Research Seminar	0	0	2	1
6	MVLS9998	Capstone Design- 1	0	0	10	5
Total Credits					16	

		Fourth Semester				
SI. No.	Course Code	Course Title	L	Т	Р	С
1	MVLS9999	Capstone Design- 2	0	0	30	15
				Tota	l Credits	15

Name of The Course	Advanced Numerical & Statistical Methods				
Course Code	MATH5001				
Prerequisite	Matrices and Calculus				
		L	T	P	C
		3	1	0	4

Course Objectives: To introduce the applications and trade off of various advanced methods used to solve a wide variety of engineering problems dealing with algebraic and differential equation that are often encountered in engineering and cannot be solved by analytical methods along with the introduction of design of experiment.

Course Outcomes

CO1	Do numerical integration for various problems
CO ₂	Do interpolation using various interpolation techniques.
CO3	Understand the Ordinary & Partial Differential equations and their solutions.
CO4	Do numerical integration
CO5	Use wavelets and their applications
CO ₆	Understand recent trends and application

Text Book (s)

- 1. **Numerical Method**: E. Balagurusamy, Tata McGraw Hill Publication.
- 2. **Applied Numerical Analysis :** Curtis F. Gerald and Patrick O. Wheatley Pearson Education Ltd.

- 1. Numerical Methods for Scientific and Engineering computation: M.K Jain, S.R.K Iyengar and R.K Jain, New age International Publishers.
- 2. **Statistical Methods:** S.P. Gupta, Sultan Chand and Sons
- 3. **Introduction to Mathematical Statistics:** A.M. Mood, F. Graybil and D.C.Boes, Mc Graw Hill Publication.

Unit-1	System of Equations	8			
		hours			
Solution	of system of linear equations- Direct Methods- Gauss elimination – Pivoti	ing,			
Partial a	nd Total Pivoting, Triangular factorization method using Crout LU				
decomp	osition, Cholesky method, Iterative Method- Gauss-Seidel and Jacobi meth	od, ill			
conditio	ned matrix				
Solution	of system of non linear equation- Newton Raphson and Modified Newton				
Raphson	Method. Iterative methods.				
Unit-2	nit-2 Interpolation and Approximation 8				
		hours			
Lagrang	e, Spline and Hermite interpolation, Approximations, Error of approximation	on,			
Norms f	or discrete and continuous data, Least square approximation.				
Unit-3	Unit-3 Numerical Integration 8				
		hours			

Newton Cotes closed Quadrature, Gauss Legendre Quadrature, Multiple Integration.

Unit-4 Numerical Solution of Differential Equations 8 hours

Finite Difference Schemes, Numerical solution of Ordinary differential equation using Modified Euler's method, Runge-Kutta method of 2nd, 3rd and 4th orders, Predictor-Corrector method, Solution of Laplace's and Poisson's equations by Liebmann's method, Solution of one dimensional time dependent heat flow.

Unit-5	Probability and statistics	8
		hours

Review of concept of probability, Random Variables, Continuous and discrete distribution function, moments and moments generating functions, Binomial, Poisson, Negative Binomial, Geometric and Hyper-geometric Distributions, Uniform, Normal, Exponential, Gamma and Beta distributions. Point and Interval estimation, Testing of Hypothesis (t-test and chi square test), Analysis of variance and Introduction of Design of experiments.

Unit-6- Understand recent trends and application using different methods 2 hrs

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Advanced Digital System Design				
Course Code	MVLS5020				
Prerequisite	Digital Electronics				
		L	T	P	C
		3	0	0	3

This course describes about the logic design techniques using simple combinational and sequential circuits to FPGAs, CPLDs.

Course Outcomes

CO1	Understand the Basics of MOS transistor Theory
CO2	Understand the Device Modeling techniques using CAD and analyze the parameters
	which degrades the functionality of MOS Devices
CO3	Design Complex CMOS Circuits
CO4	Understand and design various combinational and Sequential Circuits using CMOS
	Transistors
CO5	Perform Data Path Operations using CMOS Circuits
CO6	Understanding of recent trends and applications

Text Book (s):

- 1. T.R. Padmanabhan, B Bala Tripura Sundari, Design Through Verilog HDL, Wiley 2009.
- 2. Zainalabdien Navabi, Verliog Digital System Design, TMH, 2nd Edition.
- 3. Fundamentals of Digital Logic with Verilog Design Stephen Brown, Zvonkoc Vranesic, TMH, 2nd Edition.

Reference Book (s)

- 1. Advanced Digital Logic Design using Verilog, State Machines & Synthesis for FPGA Sunggu Lee, Cengage Learning, 2012.
- 2. Verilog HDL Samir Palnitkar, 2nd Edition, Pearson Education, 2009.
- 3. Advanced Digital Design with Verilog HDL Michel D. Ciletti, PHI,2009.

Unit-1 Overview of Verilog HDL: Verilog as HDL, Levels of Design Description, Concurrency, Simulation and Synthesis, Function Verification, System Tasks, Programming Language Interface, Module, Simulation and Synthesis Tools Language Constructs and Conventions: Introduction, Keywords, Identifiers, White Space, Characters, Comments, Numbers, Strings, Logic Values, Strengths, Data Types, Scalars and Vectors, Parameters, Operators.

Unit-2 Modeling Concepts -I	8 hours
Gate Level Modeling: Introduction, AND Gate Primitive, Module Structure, O	ther
Gate Primitives, Illustrative Examples, Tristate Gates, Array of Instances of Prin	nitives,
Design of Flip-Flops with Gate Primitives, Delay, Strengths and Construction	
Resolution, Net Types, Design of Basic Circuit.	

Modeling at Dataflow Level: Introduction, Continuous Assignment Structure, Delays and Continuous Assignments, Assignment to Vector, Operators.

Unit-3 | **Modeling Concepts -II**

8 hours

Behavioural Modeling: Introduction, Operations and Assignments, Functional Bi furcation, 'Initial' Construct, Assignments with Delays, 'Wait Construct, Multiple Always Block, Designs at Behavioural Level, Blocking and Non-Blocking Assignments, The 'Case' Statement, Simulation Flow, 'If' an 'if-Else' Constructs, 'Assign- De-Assign' Constructs, 'Repeat' Construct, for loop, 'The Disable' Construct, 'While Loop', Forever Loop, Parallel Blocks, Force-Release, Construct, Event.

Unit-4 | **Modeling Concepts -III**

8 hours

Switch Level Modeling: Basic Transistor Switches, CMOS Switches, Bi Directional Gates, Time Delays with Switch Primitives, Instantiation with 'Strengths' and 'Delays' Strength Contention with Trireg Nets.

System Tasks, Functions and Compiler Directives: Parameters, Path Delays, Module Parameters. System Tasks and Functions, File Based Tasks and Functions, Computer Directives, Hierarchical Access, User Defined Primitives

Unit-5 | Sequential Circuits and Test-benches

8 hours

Sequential Circuit Description: Sequential Models - Feedback Model, Capacitive Model, Implicit Model, Basic Memory Components, Functional Register, Static Machine Coding, Sequential Synthesis.

Components Test and Verification: Test Bench - Combinational Circuits Testing, Sequential Circuit Testing, Test Bench Techniques, Design Verification, Assertion Verification.

Unit-6 Recent trends and applications for Digital System Design

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The Course	Advanced VLSI Design				
Course Code	MVLS5021				
Prerequisite	Basic knowledge of semiconductors and its device	ces			
		L	T	P	C
		3	0	0	3

This course is designed to impart the knowledge of VLSI designing methodologies. The mathematical approach in dealing with the designing aspects enables the students to understand the subject in a better way.

Course Outcomes

CO1	Understand the Basics of MOS and Bipolar Transistor Amplifiers
CO ₂	Illustrate current mirrors and analyse the performance of various amplifiers with
	active loads
CO ₃	Desaign of Various MOS transistor powered operational Amplifiers
CO4	Understand and design various oscillators and Conveter circuits using CMOS
	Transistors
CO5	Understand the concepts of Switched Capacitor Filters
CO6	Understanding of recent trends and applications

Text Book (s)

- 1. N. Weste and K. Eshranghian, "Principles of CMOS VLSI Design", Addison Wesley, 1998.
- 2. Jacob Backer, Harry W. Li and David E. Boyce, "CMOS Circuit Design, Layout and Simulation", Prentice Hall of India, 1998..
- 3. L.Glaser and D. Dobberpuhl, "The Design and Analysis of VLSI, Circuits", Addison Wesley 1993.

- 1. Randel & Geiger, "VLSI Analog and Digital Circuit Design Techniques" McGraw-Hill,1990.
- 2. William M. Penny, Lillian Lau, "MOS Integrated Circuits- Theory, Fabrication, Design and System Applications of MOS LSI", Van Nostrand Reihold Company..
- 3. Sung Ms Kang, Yusuf Lablebici, "CMOS Digital Integrated Circuits Analysis & Design", Tata Mc-Graw Hill.

Unit-1 MOSFETs Fundamentals	9 hours	
Introduction To MOS Circuits: MOS Transistors, MOS Transistor Switches, CMOS		
Logic, Circuit and System Representations, MOS Transistor Theory - Introductio	n	
MOS Device Design Equations, The Complementary CMOS Inverter-DC		
Characteristics, Static Load MOS Inverters, The Differential Inverter, The		
Transmission Gate, The Tri State Inverter, Bipolar Devices		
Unit-2 Circuit Characterization And Performance Estimation	8 hours	
Resistance Estimation Capacitance Estimation, Inductance, Switching Characteris	stics	
CMOSGate Transistor Sizing, Power Dissipation, Sizing Routing Conductors, Ch	narge	
Sharing, Design Margining, and Reliability.		
Unit-3 CMOS Circuits	8 hours	
CMOS Circuit And Logic Design: CMOS Logic Gate Design, Basic Physical Des	sign	
of Simple Gate, CMOS Logic Structures, Clocking Strategies, I/O Structures, Low		
Power Design. Basic operation of CMOS inverter, detailed analysis of its noise margin		
propagation delay, power dissipation concept of layout & area, layout optimization & area		
estimation for a single as well as combinational logic circuits.		
Unit-4 Systems Design And Design Method	8 hours	

System Level Test Techniques, Layout Design for Improved Testability.

Unit-5 CMOS Sub System Design

8 hours

Data Path Operations-Addition/Subtraction, Parity Generators, Comparators, Zero/One Detectors, Binary Counters, ALUs, Multiplication, Shifters, Memory Elements, Control-FSM, Control Logic Implementation.

Design Strategies CMOS Chip Design Options, Design Methods, Design Capture Tools,

Manufacturing Test Principles, Design Strategies for Test, Chip Level Test Techniques,

Design Verification Tools, Design Economics, Data Sheets, CMOS Testing -

Unit-6 Recent trends and applications for VLSI Design

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Analog Filter Design				
Course Code	MVLS5004				
Prerequisite	Analog Signal Processing				
		L	T	P	C
		3	0	0	3

Course Objectives:. Analog circuits are essential in interfacing and building amplifiers and low pass filters. This course introduces design methods for CMOS an alog filter circuit.

Course Outcomes

CO1	Acquire a basic knowledge of filters and their characteristics.
CO ₂	Develop the ability to analyze and design analog filter circuits.
CO3	Learn noise modeling of CMOS analog circuits
CO4	Analysis of Butterworth and Chebyshev filters.
CO5	Design analog filter using recent active building block(CFOA, OTRA, CDTA, etc.)
CO6	Understanding of recent trends and applications

Text Book (s)

- 1. Sedra and K. C. Smith, "Microelectronic Circuits", Oxford.
- 2. G. Daryanani, "Principles of Active Network Synthesis & Design", John Wiley & Sons **Reference Book (s)**
 - 1. Design of Analog Filters, Van Valkenburg, Oxford.

Unit-1	Basic Concepts	8 hours		
Filters:	Filters: Types, Specifications and Transfer functions; Circuit elements and scaling; OP-			
AMP: in	tegrator model & basic circuits; Bode plots.			
Unit-2	Design and analysis of First & Second order Filters	8 hours		
First ord	ler: Bilinear transfer functions, Passive Realization, Active realization,	Realization		
with Boo	de plots; Second order: Design parameters (ω and Q), Second order circu	ıit.		
Unit-3	Synthesis Techniques	8 hours		
Biquad 7	Γopology: Tow Thomas, KHN, Sallen-Key, Single Amplifier Biquad usin	ng Multiple		
feedback	Topology; Inductance Simulation, General impedance converter (GIC)	and FDNR.		
Unit-4	Approximation Theory	8 hours		
Butterwo	orth: Ideal low pass filter, Butterworth response & pole locations, low	pass filter		
specifica	ations; Chebyshev: Chebyshev polynomial, magnitude response, l	ocation of		
Chebysh	nev poles.			
Unit-5	Study of Filter building blocks & recent trends	8 hours		
Current	mode building blocks and tunable filters using OTA, Current conveyors (CCI, CCII),		
CFOA, OTRA etc. and recent trends.				
Unit-6 F	Recent trends and applications for Analog Filter			

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	PROFESSIONAL AND COMMUNICATION	N SK	ILI	L	
Course Code	CENG5001				
Prerequisite					
		L	T	P	C
		0	0	4	2

To develop the professional and communication skills of learners in a technical environment.

To enable the students to acquire functional and technical writing skills.

To acquire state-of-the-art presentation skills in order to present technical topics to both technical and non-technical audience.

Course Outcomes

CO1	The learners will be able to exhibit their language proficiency and skill in	
	Describing Technology.	
CO2	The learners will be able to exhibit their language proficiency and skill in	
	Investigating and designing using Technology.	
CO3	Exhibit their language proficiency and skill in Technical Writing and Syntax.	
CO4	Exhibit their language proficiency and skill in Technical Resume and Company	
	Profile Presentation.	
CO5	Exhibit their language proficiency and skill in Pie chart, Bar chart, Line graphs:	
	analysis and interpretation	

Text Books and Softwares:

- 1. English Vocabulary in Use Advanced, McCarthy & Felicity, CUP, 2003
- 2. Sky Pronunciation CD-ROM
- 3. Cambridge Advanced Learner's Dictionary CD-ROM
- 4. English Master : Grammar

- 1. Writing, Researching, Communicating, Keith et al, Tata McGraw-Hill, 1989
- 2. Advanced English Grammar, Martin, CUP, 2006

Unit-1	Basics of Communica	tion	8 hours	
Functional	Basic structur	res- Tense agreement, Prepositional phrase	S	
Language	Techno-word	s: Basic Concepts 62, 63		
	Pronunciation	n: sounds of syllables: Past tense & plural	endings	
Technical	Organizationa	al techniques in technical writing		
Expression	Guided writing	Guided writing: Paragraph Writing, Note Making		
Presentation	Skills Techniques o aids)	f presentation (general topic: speech without	ut visual	
	Listening to s	speeches and comprehending		
Graphical S	ills Flow chart: P	rocess and Functional description		
Unit-2	8 hours			

Functional	Basic structures- Voice, Conditionals	
Language	Techno-words: Basic Concepts 64,65,67	
	Pronunciation: Word Stress: two syllable words	
Technical	Mechanics of Technical Writing and Syntax	
Expression	Guided writing: Letter and email	
Presentation Skills	Interpersonal Communication Skills	
	Writing techniques for Power point presentation, Group l	Discussion
Graphical Skills	Technical Illustrations and Instructions	
Unit-3		8 hours
Functional	Basic structures- Modal Verbs and Phrasal verbs	
Language	Techno-words: Basic Concepts 68,69,70,71	
	Pronunciation: Word Stress: compound words	
Technical	Mechanics of Technical Writing and Syntax	
Expression	Guided writing: Technical Description	
Presentation Skills	Career advancement: Technical Resume and Company P.	rofile
	Presentation and Group Discussion	
Graphical Skills	Pie chart, Bar chart, Line graphs: analysis and interpretat	ion
Unit-4		8 hours
Functional	Basic structures- Modal Verbs and Phrasal verbs	
Language	Techno-words: Basic Concepts 72,73,74, Functional voc	cabulary 87
	Pronunciation : Sentence Stress	
Technical	Technical Guided and Free writing: Abstract and Technical articles	
Expression	Expression	
Presentation Skills	Nuances of Presentation to a Technical audience	
Graphical Skills	Oral Presentation of graphical representation	

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The Course	DSP for VLSI				
Course Code	MVLS5007				
Prerequisite	DSP				
		L	T	P	C
		3	0	0	3

To design and analysis of DSP systems at chip level design

Design the different digital filters with efficient ways using VLSI.

Course Outcomes

CO1	To understand theory of different filters and algorithms
CO ₂	understand theory of multirate DSP, solve numerical problems and write algorithms
CO ₃	understand theory of prediction and solution of normal equations
CO4	know applications of DSP at block level.
CO5	understand theory of adaptive filters and algorithms
CO6	Understanding of recent trends and applications

Text Book (s)

- 1. Parhi, K.K., VLSI Digital Signal Processing Systems: Design and Implementation, John Wiley (2007).
- 2. Oppenheim, A.V. and Schafer, R.W., Discrete-Time Signal Processing, Prentice Hall (2009) 2nd ed

Reference Book (s)

- 1. Mitra, S.K., Digital Signal Processing. A Computer Based Approach, McGraw Hill (2007)3rd ed.
- 2. Wanhammar, L., DSP Integrated Circuits, Academic Press (1999).2005, ISBN: 978-0131543188.

| Introduction to DSP Systems | Introduction to DSP Systems, Iteration bound, Data Flow graphs (DFGs) representation, Loop Bound, Iteration rate, Critical loop, Critical path, Area-Speed-Power trade-offs, Algorithms for computing iteration bound, Pipelining of FIR Digital Filters, Parallel Processing, Pipelining and Parallel Processing for low power | Interest | Interest

Unit-3 Systolic Architecture Design and Fast Convolution	8 hours			
Introduction, system array design methodology, FIR systolic arrays, , Systolic Design for				
space representations containing delays Systolic architecture design methodology, Design				
examples of systolic architectures, selection of scheduling vector, matrix-matrix				
multiplication and 2-D systolic array design, Hardware Utilization efficiency, Coo	k-Toom			
Algorithm, Wniograd Algorithm, Iterated Convolution, Cyclic Convolution, Desig	gn of fast			
convolution algorithm by inspection.				
Unit-4 Algorithm Strength Reduction in filter	8 hours			
Introduction, Parallel FIR filters, Polyphase decomposition, Discrete Cosine Trans	form and			
Inverse Discrete Cosine Transform, parallel architectures for Rank Order filters.				
Unit-5 Pipelined and Parallel Recursive and Adaptive Filters	8 hours			
Introduction, pipelining in 1st order IIR digital filters, pipelining in higher order II	R digital			
filters, parallel processing for IIR filters, combined pipelining and parallel process	ing for			
IIR filters, low power IIR Filter Design using pipelining and parallel processing, pipelined				
adaptive digital filters.				
Unit-6 Recent trends and applications for Filter design for DSP				

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	VLSI Testing and Fault Tolerance				
Course Code	MVLS5008				
Prerequisite					
_		L	T	P	C
		3	0	0	3

Course Objectives:. This course deals with basics of testing and fault diagnosis in IC design. The combinational and sequential circuits are tested with various test patterns. Self checking circuits and algorithms are also discussed.

Course Outcomes

CO1	Understand various testing techniques.
CO ₂	Various physical faults and their modelling
CO ₃	Various self test circuits and test algorithms
CO4	Know fault diagnosis methods for combinational and sequential circuits
CO5	Verify increasingly complex designs more efficiently and effectively.
CO6	Understanding of recent trends and applications

Text Book (s)

Unit-1 Physical Fault Modeling And Basics Of Testing	8 hours			
Physical Faults and their modelling, Stuck at Faults, Bridging Faults, Fault collapsing,				
Fault				
Simulation, Deductive, Parallel, and Concurrent Fault Simulation, Introduction to	Testing			
Unit-2 Test Generation For Combinational And Sequential Circuits	8 hours			
Deterministic and Weighted Random Test Pattern Generation, Test generation for	r			
combinational logic circuits, Testable combinational logic circuit design, Test gen	neration			
for sequential circuits, design of testable sequential circuits.				
Unit-3 Design For Testability	8 hours			
Design for Testability, Ad-hoc design, Generic scan based design, Classical scan	based			
design ,System level DFT approaches, Time Frame Expansion, Controllability an	ıd			
Observability Scan Design, Boundary Scan for Board Level Testing				
Unit-4 Self Test And Test Algorithms	8 hours			
Built-In Self Test and Totally Self checking circuits, Test pattern generation for E	BIST,			
Circular BIST, BIST Architectures, Testable Memory Design -Permanent, Intermittent and				
Pattern Sensitive Faults, Marching Tests, Test algorithms, Test generation for Embedded				
RAMs.				
Unit-5 Fault Diagnosis	8 hours			

Logic Level Diagnosis, Diagnosis by UUT reduction, Fault Diagnosis for Combinational Circuits, Self-checking design, System Level Diagnosis, Concept of Redundancy, Spatial Redundancy, Time Redundancy, Error Correction Codes, Reconfiguration Techniques, Yield Modelling, Reliability and effective area utilization.

Unit-6 Recent trends and applications for VLSI Testing and Fault Tolerance

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The Course	ASIC Design and FPGA				
Course Code	MVLS5009				
Prerequisite					
_		L	T	P	C
		3	0	0	3

Course Objectives:. This course deals with the concepts of ASIC design, ASIC Construction and design using Xilinx

Course Outcomes

CO1	Define the basic concepts of ASIC design and Verilog HDL
CO2	Express the details of programmable ASICs and FPGAs technologies from ACTEL,
	ALTERA and XILINX
CO3	Practice writing the Dataflow and Behavioral models of digital circuits for
	simulation and synthesis using ASICs and FPGAs
CO4	Testing and Verification of Register Transfer Level (RTL) models of Digital
	Circuits using ASICs and FPGAs.
CO5	Simulate and Synthesize using Xilinx family FPGA
CO ₆	Understanding of recent trends and applications

Text Book (s):

- 1. M.J.S .Smith, "Application Specific Integrated Circuits " Addison -Wesley Longman Inc., 1997
- 2. R. B. Reese, M A Thornton, "Introduction to Logic Syntehsis Using Verilog HDL," Morgan & Claypool Publishers, 2006

- 1. Skahill, Kevin," VHDL for Programmable Logic", Addison-Wesley, 1996
- 2. John F. Wakherly, "Digital Design: Principles and Practices", 2nd Edn 1994, Prentice Hall International Edn
- 3. Charles W. Mckay, "Digital Circuits a proportion for microprocessors", Prentice Hall International Edition.

Unit-1	Introduction To ASIC and HDL	8 hours				
Introduc	Introduction To ASICS, CMOS Logic And ASIC Library Design, Types of ASICs –					
Design	flow - CMOS transistors CMOS Design rules - Combinational Log	gic Cell –				
Sequenti	ial logic cell – Data path logic cell – Transistors as Resistors – Transisto	r Parasitic				
Capacita	Capacitance- Logical effort -Library cell design – Library architecture.					
Review	Review of VHDL/Verilog: Entities and architectures					
Unit-2	Programmable ASICS	8 hours				
Programmable Asics, Programmable ASIC Logic Cells And Programmable ASIC I/O						
Cells						

Actel ACT – Xilinx LCA – Altera FLEX - Altera MAX DC & AC inputs and outputs -Clock & Power inputs - Xilinx I/O blocks Unit-3 8 hours **Programmable ASIC Interconnect & Software** Programmable ASIC Interconnect, Programmable ASIC Design Software And Low Level Design Entry Actel ACT -Xilinx LCA - Xilinx EPLD - Altera MAX 5000 and 7000 - Altera MAX 9000 - Altera FLEX - Design systems - Logic Synthesis - Half gate ASIC -Schematic entry -Low level design language - PLA tools - EDIF- CFI design representation **Unit-4** | **ASIC Construction & FPGA partitioning** 8 hours ASIC Construction, Floor Planning, Placement And Routing, System partition - FPGA partitioning - partitioning methods - floor planning - placement - physical design flow global routing - detailed routing - special routing -circuit extraction - DRC. **Unit-5** Design using Xilinx 8 hours Design using Xilinx family FPGA

Anti fuse – static RAM – EPROM and EEPROM technology – PREP benchmarks –

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Unit-6 Recent trends and applications for ASIC Design and FPGA

Name of The Course	Embedded Systems Design				
Course Code	MVLS6001				
Prerequisite					
		L	T	P	C
		3	0	0	3

This course deals introduction to Embedded Computing, embedded Processors, RTOS Design and Simulation.

Course Outcomes

CO1	understand the basic of Embedded System Design.
CO2	visualize the role of CISC & amp; RISC in processor operation.
CO3	differentiate between embedded processor and other general-purpose processors
	and how to use them in specific application
CO4	understand RTOS – basics and relevance in embedded system.
CO5	list Issues involved in embedded system design
CO6	Understanding of recent trends and applications

Text Book (s)

- 1. Wayne Wolf, "Computers as Components: Principles of Embedded Computing System Design", Morgan Kaufman Publishers.
- 2. Jane.W.S. Liu, "Real-Time systems", Pearson Education Asia.
- 3. Heath, S., Embedded Systems Design, Elsevier Science (2003).

Reference Book (s)

- 1. C. M. Krishna and K. G. Shin, "Real-Time Systems", McGraw-Hill, 1997
- 2. Frank Vahid and Tony Givargis, "Embedded System Design: A Unified Hardware/Software Introduction", John Wiley & Sons.
- 3. Fisher, J.A., Faraboschi, P. and Young, C., Embedded Computing A VLIW
- 4. Approach to Architecture, Compilers and Tools, Morgan Kaufman (2005).

Unit-1 Embedded Processing Introduction to Embedded Computing, Difference between Embedded and General-Purpose Computing, Characterizing Embedded Computing, Design Philosophies, RISC, CISC, VLIW versus superscalar, VLIW versus DSP Processors, Role of the Compiler, Architectural structures, The data path, Registers and Clusters, Memory Architecture, Branch architecture, Speculation and prediction, Prediction in the embedded domain, Register File Design, Pipeline Design, the control unit, control registers Unit-2 Embedded Processors Embedded Computers, Characteristics of Embedded Computing Applications, and Challenges in Embedded Computing system design. ARM architecture, Embedded Cores, Soft and Hard Cores, Architecture of Configura

ble Microblaze soft core, Instruction set, Stacks and Subroutines, Microblaze Assembly Programming, Input-Output interfacing, GPIO, LCD interfacing, Peripherals, DDR Memory, SDRAM, Microblaze interrupts, Timers, Exceptions, Bus Interfacing, DMA, On-chip Peripheral bus (OPB), OPB Arbitration, OPB DMA

Unit-3 Networks 8 hours

Distributed Embedded Architecture- Hardware and Software Architectures, Networks for embedded systems- I2C, CAN Bus, SHARC link supports, Ethernet, Myrinet, Internet, Network-Based design- Communication Analysis, system performance Analysis, Hardware platform design, Allocation and scheduling, Design Example: Elevator Controller.

Unit-4 | **RTOS** and **Application Design**

8 hours

Programming embedded systems in assembly and C – Meeting real time constraints –Multistate systems and function sequences. Embedded software development tools –Emulators and debuggers. Embedded Matlab, Embedded JAVA, Embedded C extensions, Real time operating systems, Embedded RTOS, Real time process scheduling, structure of real time operating system, Memory management in Embedded operating system. File systems in Embedded devices, Different types of locks, Semaphores, Application studies with Vxworks, Montavista Linux etc.

Unit-5 | System Design Techniques and Simulation

8 hours

Design Methodologies, Requirement Analysis, Specification, System Analysis and Architecture Design, Quality Assurance. System-on-a-Chip (SoC), IP Blocks and Design Reuse, Processor Cores and SoC, Non-programmable accelerators, reconfigurable logic, multiprocessing on a chip, symmetric multiprocessing, heterogeneous multiprocessing, use of simulators, Compilers, Loaders, Linkers, locators, assemblers, Libraries, post run optimizer, debuggers, profiling techniques, binary utilities, linker script, system simulation.

Unit-6 Recent trends and applications for Embedded Systems Design

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The Course	Advanced VLSI Technology				
Course Code	MVLS5003				
Prerequisite					
		L	T	P	C
		3	0	0	3

A course in VLSI semiconductor devices, to give knowledge about modern CMOS technology, crystal growth, fabrication, and basic properties of silicon wafers. It will focus on lithography, thermal oxidation, (Si/Si)2, interface, dopant diffusion, ion implantation, thin film deposition, etching, and back-end technology

Course Outcomes

CO1	Understand various IC fabrication techniques.
CO ₂	Have knowledge of fabrication of various semiconductor components.
CO ₃	Understand fundamentals of different deposition techniques for thin film
	deposition.
CO4	Learn basics of lithography and application of different lithographic technologies in
	IC fabrication processes.
CO5	Understand etching and metallization process and its significance in IC fabrication
	process.
CO ₆	Understanding of recent trends and applications

Text Book (s)

- W. Wolf, "Modern VLSI design", 4th Edition, PHI Learning, 2009, ISBN 9788120338241.
 S.M.Sze, "VLSI technology", 2nd Edition, Tata Mc Graw Hill Education, 2003, ISBN 9780070582910

Reference Book (s)

Douglas Pucknell, "Basic VLSI design", 3rd Edition, PHI Learning, 2011, ISBN 9788120309869

Unit-1	IC Fabrication Technologies	8 hours	
Process steps in IC fabrication Crystal growth and wafer preparation- Czochralski process-			
apparatu	s- silicon shaping, slicing and polishing- Diffusion of impurities- physi-	cal	
mechani	sm-Fick's I and II law of diffusion-Diffusion profiles-complementary	(erfc) error	
function	- Gaussian profile- Ion implantation- Annealing process- Oxidation pro	cess-	
Lithogra	phy- Photolithography, Fine line lithography, electron beam and x-ray		
lithograp	lithography- Chemical vapour deposition- epitaxial growth- reactors- metallisation-		
patternir	patterning- wire bonding and packaging – Comparison.		
Unit-2 Fabrication of Semiconductor Devices 8 hours			
Monolithic components Isolation of components- junction isolation and dielectric isolation-			
Transistor fabrication- buried 1			

ayer- impurity profile- parasitic effects- monolithic diodes- schottky diodes and transistors-FET structures- JFET- MOSFET- PMOS and NMOS, control of threshold voltage (Vth)silicon gate technology- Monolithic resistors- sheet resistance and resistor design- resistors in diffused regions- MOS resistors- monolithic capacitors- junction and MOS structures-IC crossovers and vias

Unit-3 | CMOS Technology

8 hours

CMOS technology Metal gate and silicon gate- oxide isolation- Twin well process- Latch up- BiCMOS technology- fabrication steps- circuit design process- stick diagrams- design rules- Capacitance of layers- Delay- Driving large capacitance loads- Wiring capacitance-Basic circuit concepts- scaling of MOS structures- scaling factors- effects of miniaturization.

Unit-4 | CMOS Logic Systems

8 hours

Subsystem design and layout- Simple logic circuits- inverter, NAND gates, BiCMOS circuit, NOR gates, CMOS logic systems – bus lines- arrangements- power dissipation-power supply rail distribution- subsystem design process- design of a 4 bit and 8 bit shifter.

Unit-5 | **GaAs Fabrication**

8 hours

Gallium Arsenide Technology Sub-micro CMOS technology- Crystal structure- Doping process- Channeling effect- MESFET- GaAs fabrication- Device modeling.

Unit-6 Recent trends and applications for VLSI Technology

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	MOS Device Modelling				
Course Code	MVLS5005				
Prerequisite					
		L	T	P	C
		3	0	0	3

This course deals with fundamentals of semiconductor devices, which are undergraduate level, will be reviewed and distributed-constant circuit models will be also provided. Then, in-depth modeling of MOS transistors will be introduced using the textbook. This helps you design VLSIs using the deep sub-micron CMOS in the near future

Course Outcomes

CO1	Explain basic concept of semiconductor devices
CO ₂	Design CMOS VLSI chips
CO3	model, analyze and design different types of MOS devices
CO4	Learn Parameter Measurement
CO5	Forecast the future direction of VLSI technologies
CO6	Understanding of recent trends and applications

Text Book (s)

- 1. Tsividis, Y., "Operation and Modeling of the MOS Transistor", 2nd ed.,Oxford University Press, 2008.
- 2. Sze, S.M., "Physics of Semiconductor Devices", John Wiley, 2008.

- 1. Muller, R.S., Kamins, "T.I., and Chan, M., Device Electronics for Integrated Circuits", 3rd ed., John Wiley, 2007.
 - 2. Taur, Y. and Ning, T.H., "Fundamentals of Modern VLSI Devices", Cambridge University Press, 2009.

Unit-1	Semiconductor and Quantum Mechanics Fundamentals	8 hours				
Poisson	Poisson and Continuity Equations, Recombination, Equilibrium carrier concentrations					
electron	electron statistics, density of states, effective mass, bandgap narrowing), Review of PN					
and MS	and MS diodes. Basic Quantum Mechanics, Crystal symmetry and band structure, 2D/1D					
density	of states, Tunneling					

Unit-2	Modeling and Simulation of Carrier Transport and MOS	8 hours
	Capacitors	

Carrier Scattering (impurity, phonon, carriercarrier, remote/interface), Boltzmann Transport Equation, Drift-diffusion. Modes o

f operation (accumulation, depletion, strong/weak inversion), Capacitance versus voltage, Gated diode, Non-ideal effects (poly depletion, surface charges), High field effects (tunneling, breakdown).

Unit-3 | **MOSFET Modeling**

8 hours

Introduction Interior Layer, MOS Transistor Current, Threshold Voltage, Temperature Short Channel and Narrow Width Effect, Models for Enhancement, Depletion Type MOSFET, CMOS Models in SPICE, Long Channel MOSFET Devices, Short Channel MOSFET Devices.

Unit-4 | Parameter Measurement

8 hours

General Methods, Specific Bipolar Measurement, Depletion Capacitance, Series Resistances, Early Effect, Gummel Plots, MOSFET: Long and Short Channel Parameters, Statistical Modeling of Bipolar and MOS Transistors.

Unit-5 | **Advanced Device Technology**

8 hours

SOI, SiGe, strained Si, Alternative oxide/gate materials, Alternative geometries (raised source/drain, dual gate, vertical, FinFET), Memory Devices (DRAM, Flash). Sub-micron and Deep sub-micron Device Modeling.

Unit-6 Recent trends and applications for MOS Device Modelling

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Advanced Digital VLSI Design				
Course Code	MVLS5010				
Prerequisite					
-		L	T	P	C
		3	0	0	3

This course deals with the concepts of MOS transistor, Modelling of MOS transistor, CMOS, Latches and Registers.

Course Outcomes

CO1	understand the concepts of MOS devices
CO ₂	model MOS transistor
CO3	Design latches and registers
CO4	Design data paths
CO5	Understand memory control elements
CO6	Understanding of recent trends and applications

Text Book (s):

- 1. Jan.M.Rabaey., Anitha Chandrakasan Borivoje Nikolic, "Digital Integrated Circuits", Second Edition
- 2. Neil H.E Weste and Kamran Eshraghian, "Principles of CMOS VLSI Design", 2nd Edition, Addition Wesley, 1998

Reference Book (s):

1. Sung-Mo Kang, Yusuf Leblebici, "CMOS Digital IC- Analysis and Design", 3rd Edition, Tata McGraw Hill publication

r consumption-static consumption

Unit-3 CMOS 8 hours

Static CMOS design-complementary CMOS - static properties- complementary CMOS design-Power consumption in CMOS logic gates-dynamic or glitching transitions - Design techniques to reduce switching activity - Radioed logic-DC VSL - pass transistor logic - Differential pass transistor logic -Sizing of level restorer-Sizing in pass transistor-Dynamic CMOS design-Basic principles - Domino logic-optimization of Domino logic-NPCMOS-logic style selection -Designing logic for reduced supply voltages

Unit-4 Latches & Registers

8 hours

Timing metrics for sequential circuit -latches Vs registers -static latches and registers - Bistability principle - multiplexer based latches-master slave edge triggered registers- non-ideal clock signals-low voltage static latches-static SR flip flop - Dynamic latches and registers-C2MOS register - Dual edge registers-True single phase clocked registers-pipelining to optimize sequential circuit latch Vs register based pipelines-non-Bistable sequential circuit-Schmitt trigger-mono stable -Astable -sequential circuit - choosing a clocking strategy.

Unit-5 Data Path Operations

8 hours

Data Path Operations Addition/Subtraction - Comparators- Zero/One Detectors- Binary Counters- ALUs- Multiplication- Shifters- Memory elements- control : Finite-State Machines.

Unit-6 Recent trends and applications for Digital VLSI Design

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Low power VLSI Design				
Course Code	MVLS5011				
Prerequisite					
_		L	T	P	C
		3	0	0	3

Course Objectives:. This course deals with issues and models to design low-power VLSI circuits, fundamentals of power dissipation in microelectronic devices, will be able to estimate power dissipation due to switching, short circuit.

Course Outcomes

CO1	analyze and design low-power VLSI circuits using different circuit technologies
	and design levels.
CO ₂	design chips used for battery-powered systems
CO ₃	design high-performance circuits not exceeding power limits
CO4	Design and test of low-voltage CMOS circuits.
CO5	Learn architecture level estimation and synthesis
CO ₆	Understanding of recent trends and applications

Text Book (s)

- 1. Roy, K. and Prasad, Sharat C., "Low Power CMOS VLSI: Circuit Design", John Wiley, 2009.
- 2. Chandrakasan, A.P. and Broderson, R.W., "Low Power Digital CMOS Design", Kluwer, 1995.

- 1. Rabaey, J.M. and Pedram, M., "Low Power Design Methodologies", Springer 1996.
- 2. Yeo, K.S. and Roy K., Low Voltage, "Low Power VLSI Subsystems", McGraw Hill, 2004.
- 3. Sanchez-Sinencio, E. and Andreou, A.G., "Low-Voltage/Low-Power Integrated

Unit-1	Unit-1 Low Power Microelectronics					
Retrospe	Retrospect and Prospect, Fundamentals of power dissipation in microelectronic devices,					
Estimati	on of power dissipation due to switching, short circuit, subthreshold le	akage, and				
diode lea	akage currents.					
Unit-2 Device & Technology Impact on Low Power						
Dynamic	Dynamic dissipation in CMOS, Transistor sizing & gate oxide thickness, Impact o					
technolo	technology Scaling, Technology & Device innovation.					
Unit-3	Simulation Power and Probabilistic power analysis	8 hours				

SPICE circuit simulators, gate level logic simulation, capacitive power estimation, static state power, gate level capacitance estimation, architecture level analysis, data correlation analysis in DSP systems. Monte Carlo simulation. Random logic signals, probability & frequency, probabilistic power analysis techniques, signal entropy.

IInit_4	Low Voltage Technologies and Circuits	
€/1111 €	LOW VOILAGE LECTION OF ICS AND CITCUITS	

8 hours

Threshold Voltage Scaling and Control, Multiple Threshold CMOS (MTCMOS), Substrate Bias Controlled Variable Threshold CMOS, Testing Issues: Design and test of low-voltage CMOS circuits.

Unit-5 | Algorithm and architectural level methodologies

8 hours

Introduction, design flow, algorithmic level analysis and optimization, Architectural level estimation and synthesis.

Unit-6 Recent trends and applications for Low power VLSI Design

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Sensor Technology and MEMS				
Course Code	MVLS5014				
Prerequisite					
_		L	T	P	C
		3	0	0	3

Course Description:

This course deals with study of different Sensors and MEMS technology

Course Outcomes

CO1	Understand working of sensors
CO ₂	know microsystems and MEMES
CO3	Know materials used for MEMS
CO4	Understand fabrication process
CO5	Know design process of microsystem
CO6	Understanding of recent trends and applications

Text Book (s):

1. Integrated Sensors, Microp-actuators and micro-systems (MEMS): K.D. (Guest

Editor), Special Issue of proceedings of IEEE, Vol. 86, No.8, August 1998

2. RF MEMS: Theory, Design, and Technology: Gabriel M. Rebeiz, Wiley, 2003.

Reference Book (s)

1. Fundamentals of Microfabrication: Marc Madou, CRC Press, 1997.

Unit-1	Overview of Sensors	8 hours		
Classific	Classification of physical sensors, Integrated, Intelligent, or Smart sensors, Sensor			
Principle	es and Examples: Thermal sensors, Electrical Sensors, Mechanical Sensors	nsors,		
Chemica	al and Biosensors, Case study on strain sensors, Temperature sensors, I	Pressure		
sensors,	Humidity sensors, Accelerometers, Gyroscopes, RF MEMS Switch, p	hase shifter,		
and sma	rt sensors.			
Unit-2	Microsystems	8 hours		
MEMS :	MEMS and Microsystems, Microsystems and microelectronics, Microsystems and			
miniatur	miniaturization, Working principle of micro system, Micro sensors, Micro actuators,			
MEMS	MEMS with Micro actuators			
Unit-3	Unit-3 Materials For MEMS 8 hours			
Substrate and wafer, silicon as a substrate material, silicon compound, silicon Piezo-				
resistors, Gallium Arsenide, quartz, Piezoelectric crystals, polymers and packaging				
Materials.				

Unit-4	Fabrication Process	8 hours			
Photolith	Photolithography, Ion implantation, Oxidation, Chemical vapor deposition (CVD),				
Physical	Physical vapor deposition, Deposition by Epitaxy, Etching.Manufacturing Process - Bulk				
Microma	achining, Surface Micromachining, LIGA Process				
Unit-5	Micro system Design	8 hours			
Design consideration, process design, Mechanical design, Mechanical design using					
MEMS.	MEMS. Mechanical packaging of Microsystems, Microsystems packaging, interfacing in				
Microsystems packaging, packaging technology, selection of packaging materials, signal					
mapping and transduction. MEMS for RF Applications: Need for RF MEMS components					
in communications, space and defense applications					
Unit-6 Recent trends and applications for Sensor Technology and MEMS					

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Nano-Electronics				
Course Code	MVLS5015				
Prerequisite					
		L	T	P	C
		3	0	0	3

- 1.Understand the fundamental forces controlling the dynamic and static response of materials at the Nano-scale.
- 2. To have comprehensive understanding of state-of-the-art Nano-fabrication methods.
- 3. To have knowledge of processing conditions to functional nanomaterials.
- 4. To scalable system for the continuous production of nanomaterials.
- 5. To understand the state-of-the-art characterization methods for nanomaterials.

Course Outcomes

CO1	Understand the fundamental forces controlling the dynamic and static response of materials at the Nano-scale
CO2	To demonstrate a comprehensive understanding of state-of-the-art Nano-
	fabrication method
CO3	To determine and evaluate processing conditions to functional nanomaterials.
CO4	Design and analyse scalable system for the continuous production of nanomaterials.
CO5	Understand the state-of-the-art characterization methods for nanomaterials.
CO6	Understanding of recent trends and applications

Text Book (s):

1. Nanoelectronics & Nanosystems: From Transistor to Molecular & Quantum Devices: Karl Goser, Jan Dienstuhl.

- 1. Rainer Waser (Ed.), Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices, Wiley-VCH, 2003
- 2. Microfabrication by Marc Madaon, CRC Press

Unit-1	Introduction to nanoelectronics				
Recent 1	Recent past, the present and its challenges, Future, Overview of basic Na				
Physics	of solid state, Structure - Energy band - Quantum mechanics.				
Unit-2	Fundamentals of Nanoelectronics	8 hours			
Fundam	Fundamentals of logic devices:- Requirements, dynamic properties, threshold gates,				
physical	physical limits to computations, concepts of logic devices:- classifications, two terminal				
devices,	devices, field effect devices, coulomb blockade devices, spintronics, quantum cellular				
automat	automata – quantum computing ; performance of information processing systems;- basic				
binary o	binary operations, measure of performance processing capability of biological neurons,				

performance estimation for the human brain. Ultimate computation:- power dissipation limit – dissipation in reversible computation – the ultimate computer.

Unit-3 | Molecular Electronics Components

8 hours

Characterization of switches and complex molecular devices, polyphenylene based Molecular rectifying diode switches. Technologies, Single Electron Devices, Quantum Mechanical Tunnel Devices, Quantum Dots & Quantum wires.

Unit-4 Nanocomputers

8 hours

Nanoelectronic & Nanocomputer architectures and nanotechnology: Introduction to nanoelectronic and nanocomputers, Quantum DOT cellular Automata (QCA), Single electron circuits, molecular circuits Nanocomputer Architecture.

Unit-5 | Silicon MOSFETs & Quantum Transport Devices

8 hours

Silicon MOSFETS - Novel materials and alternate concepts:- fundamentals of MOSFET Devices, scaling rules, silicon-dioxide based gate dielectrics, metal gates, junctions & contacts, advanced MOSFET concepts, Quantum transport devices based on resonant tunneling:- Electron tunneling, resonant tunneling diodes – resonant tunneling devices; Single electron devices for logic applications:- Single electron devices – applications of single electron devices to logic circuits.

Unit-6 Recent trends and applications for Nano-Electronics

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Design of Semiconductor Memories				
Course Code	MVLS5016				
Prerequisite					
_		L	T	P	C
		3	0	0	3

- 1. Comprehend the concept of memory structures, reliability and radiation effects.
- 2. Have a knowledge on Memory fault modelling, Testing and design for fault tolerance.

Course Outcomes

CO1	Select architecture and design semiconductor memory circuits and subsystems.
CO ₂	Know non-volatile memory architecture
CO ₃	Identify various fault models, modes and mechanisms in semiconductor memories
	and their testing procedures.
CO4	Understand reliability issues and RAM failures
CO5	Know about packaging technologies of memory
CO6	Understanding of recent trends and applications

Text Book (s)

- 1. Ashok K. Sharma, "Semiconductor Memories Technology, Testing and Reliability", Prentice-Hall of india Private Limited, New Delhi, 1997.
- 2. Tegze P. Haraszti," CMOS Memory Circuits", Kluwer Academic Publishers, 2001

Reference Book (s)

- 1. Betty Prince, "Emerging Memories: Technologies and Trends", Kluwer academic publishers, 2002
- 2. Kiyoo Itoh, "VLSI memory chip design", Springer International Edition

Unit-1 | **RAM Technologies**

Static Random Access Memories: SRAM Cell Structures-MOS SRAM Architecture-MOS SRAM Cell and Peripheral Circuit Operation-Bipolar SRAM Technologies- SOI Technology-Advanced SRAM Architectures and Technologies-Application Specific SRAM- Dynamic Random Access Memories: DRAM Technology Development-CMOS DRAMs-DRAMs Cell Theory and Advanced Cell Structures -BiCMOS, DRAMs-Soft Error Failures in DRAMs-Advanced DRAM Designs and Architecture-Application, Specific DRAMs.

Unit-2 | Nonvolatile Memories

8 hours

Masked Read-Only Memories (ROMs)-High Density ROMs-PROMs-Bipolar PROMs-CMOS, PROMs-Erasable (UV) - EPROM-Floating-GateEPROM Cell-One-Time Programmable (OTP) EPROMs-EEPROM-EEPROM Technology And Arcitecture-Nonvolatile SRAM-Flash Memories (EPROMs or EEPROM)-Advanced Flash Memory Architecture

Unit-3 Memory Fault Modelling, Testing and design for Fault Tolerance 8 hour	ours
--	------

RAM Fault Modeling, Electrical Testing, Pseudo Random Testing-Megabit DRAM Testing-Nonvolatile Memory Modeling and Testing-IDDQ Fault Modeling and Testing-Application Specific Memory Testing

Unit-4 | Reliability and Radiation Effects

8 hours

General Reliability Issues-RAM Failure Modes and Mechanism-Nonvolatile Memory Reliability-Reliability Modeling and Failure Rate Prediction-Design for Reliability-Reliability Test Structures-Reliability Screening and Qualification. RAM Fault Modeling, Electrical Testing, Psuedo Random Testing-Megabit DRAM Testing-Nonvolatile Memory Modeling and Testing-IDDQ Fault Modeling and Testing-Application Specific Memory Testing.

Unit-5 | Packaging Technologies

8 hours

Radiation Effects-Single Event Phenomenon (SEP)-Radiation Hardening Techniques-Radiation Hardening Process and Design Issues-Radiation Hardened Memory Characteristics-Radiation Hardness Assurance and Testing - Radiation Dosimetry-Water Level Radiation Testing and Test Structures. Ferroelectric Random Access Memories (FRAMs)-Gallium Arsenide (GaAs) FRAMs-Analog Memories-Magnetoresistive. Random

Access Memories (MRAMs) -Experimental Memory Devices. Memory Hybrids and MCMs

(2D)-Memory Stacks and MCMs (3D)-Memory MCM Testing and Reliability Issues-Memory Cards-High Density Memory Packaging Future Directions.

Unit-6 Recent trends and applications for Design of Semiconductor Memories

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The Course	Advanced Analog VLSI Design				
Course Code	MVLS5017				
Prerequisite					
		L	T	P	C
		3	0	0	3

- 1. Recognize transistor amplifiers.
- 2. Design multistage MOS amplifiers.

Course Outcomes

CO1	demonstrate the use of analog circuit analysis techniques to analyze the operation	
	and behavior of various analog integrated circuits.	
CO2	demonstrate their knowledge by designing analog circuits.	
CO ₃	compute the gain, power, and bandwidth of analog circuits.	
CO4	Understand the concept of different parameters like gain, power, and bandwidth.	
CO5	understand the Switched capacitor circuits and data converters.	
CO6	Understanding of recent trends and applications	

Text Book (s)

- 1. Paul B Gray and Robert G Meyer, "Analysis and Design of Analog Integrated Circuits".
- 2. D. A. Johns and Martin, Analog Integrated Circuit Design, John Wiley, 1997.

Reference Book (s)

- 1. R Gregorian and G C Temes, Analog MOS Integrated Circuits for Signal Processing, John Wiley, 1986.
- 2.R L Geiger, P E Allen and N R Strader, VLSI Design Techniques for Analog & Digital Circuits, McGraw Hill, 1990.

Unit-1 MOS & BJT Transistor Amplifiers 8 hours Single transistor Amplifiers stages: Common Emitter, Common base, Common Collector, Common Drain, Common Gate & Common Source Amplifiers Multiple Transistor Amplifier stages: CC-CE, CC-CC, & Darlington configuration, Cascode configuration, Active Cascode. Differential Amplifiers: Differential pair & DC transfer characteristics. **Unit-2** | Current Mirrors, Active Loads & References 8 hours Current Mirrors: Simple current mirror, Cascode current mirrors Widlar current mirror, Wilson Current mirror, etc. Active loads, Voltage & current references. Analysis of Differential Amplifier with active load, supply and temperature independent biasing techniques, Frequency Response, **Unit-3** | Operational Amplifier 8 hours Applications of operational Amplifier, theory and Design; Definition of Performance Characteristics; Design of two stage MO

S Operational Amplifier, two stage MOS operational Amplifier with cascodes, MOS telescopic-cascode operational amplifiers, MOS Folded-cascode operational amplifiers, Bipolar operational amplifiers. Frequency response & compensation..

Unit-4	Nonlinear Analog Circuits	8 hours		
Analysis of four quadrant and variable Tran conductance multiplier, Voltage conf				
oscillato	r, Comparators, Analog Buffers, Source Follower and Other Structures.	Phase		
Locked Techniques; Phase Locked Loops (PLL), closed loop analysis of PLL. Dig				
Analog	Analog (D/A) and Analog-to-Digital (A/D) Converters			
Unit-5 OTA & Switched Capacitor filters 8 ho OTA Amplifiers. Switched Capacitor Circuits and Switched Capacitor Filters.				
Unit-6 F	Recent trends and applications for Advanced Analog VLSI Design			

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Physical Design Automation				
Course Code	MVLS6002				
Prerequisite					
_		L	T	P	C
		3	0	0	3

- 1. Learn automation process used in VLSI system design
- 2. Understand various physical design CAD tools and designing algorithm.

Course Outcomes

CO1	know automation process for VLSI System design.
CO ₂	Understanding of fundamentals for various physical design CAD tools.
CO3	Know floor-planning and PIN assignment
CO4	Learn to implement different routing algorithms
CO5	Develop and enhance the existing algorithms and computational techniques for
	physical automation
CO6	Understanding of recent trends and applications

Text Book (s)

- 1. Sung Kyu Lim, Practical Problems for VLSI Physical Design Automation, Springer Publications
- 2. Majid Sarrafzadeh and C. K. Wong, An Introduction to VLSI Physical Design, McGraw Hill, 1996

Reference Book (s)

Based Approach, Performance Driven Routing.

- 1. Computer Aided Logical Design with Emphasis on VLSI Hill & Peterson, Wiley, 1993.
- 2. Naveed Sherwani, Algorithms for VLSI Physical Design Automation, Springer Publications.
- 3. Modern VLSI Design: Systems on silicon Wayne Wolf, Pearson Education Asia, 2nd

	·				
Unit-1	Data Structures and Basic Algorithms	8 hours			
Basic Te	erminology, Complexity Issues and NP-hardness, Basic Algorithms, Basic	Data			
Structure	es, Graph Algorithms for Physical design.				
Unit-2	Partitioning	8 hours			
Problem	Formulation, Classification of Partitioning Algorithms, Group Migration	[
Algorith	ms, Simulated Annealing and Evolution, Other Partitioning Algorithms.				
Performa	ance Driven Partitioning				
Unit-3	Floorplanning and Pin Assignment	8 hours			
Floorplanning, Chip planning, Pin Assignment. Global Routing: Problem Formulation,					
Classification of Global Routing, Maze Routing Algorithms, Line-Probe Algorithms,					
Shortest	Shortest Path Based Algorithms, Steiner Tree based Algorithms Integer Programming				

T T 1. 4				
Unit-4	Detailed Routing	8 hours		
Problem	Formulation, Classification of Routing Algorithms, Single-Layer Routin	g		
Algorith	ms, Two-Layer Channel Routing Algorithms, Three-Layer Channel Rout	ing		
Algorithms, Multi-Layer Channel Routing Algorithms, Switchbox Routing Algorithms				
Unit-5	Over-the-Cell Routing and Via Minimization	8 hours		
Over-the	Over-the-cell Routing, Via Minimization. Clock and Power Routing: Clock Routing,			
Power and Ground Routing. Compaction: Problem Formulation, Classification of				
Power as	nd Ground Routing. Compaction: Problem Formulation, Classification of			
	nd Ground Routing. Compaction: Problem Formulation, Classification of tion Algorithms, One-Dimensional Compaction, Two-Dimensional Comp			
Compac				

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The Course	System-on-Chip Design				
Course Code	MVLS6003				
Prerequisite					
_		L	T	P	C
		3	0	0	3

- 1. Apply concepts of semiconductor devices to design and analyze circuits.
- 2. To prepare students to know the characteristics of different semiconductor devices.
- 3. Apply fundamentals of semiconductor devices in electronics projects in circuit design, evaluation and analysis.
- 4. Explain the fundamental principles necessary for the analysis and design of analog integrated circuits at transistor level.

Course Outcomes

CO1	Define the hardware and software structures used to implement and model inter-	
	component communication in System on Chip.	
CO2	Describe the details of subsystem components like Adders, Multipliers and ALUs	
	etc.	
CO3	Practice writing the Behavioral models of digital circuits for simulation and	
	synthesis using SystemC, including transactional modelling.	
CO4	Learn Testing and Verification of system level designs using SystemC.	
CO5	Simulate and Synthesize using SystemC.	
C06	Understanding of recent trends and applications	

Text Book (s)

- 1. Wolf, W., "Modern VLSI Design: System-on-chip Design", 3rd ed., Prentice Hall 2002.
- 2. Lin, S. Y.L., "Essential Issues in SOC Design: Designing Complex Systems-On-Chip", Springer ,2006.
- 3. D. Black, J. Donovan, B. Bunton, A. Keist, "SystemC: From the Ground Up", Second Edition, Springer, 2010.

- 1. Asheden, P.J. and Mermet J., "System-on-Chip Methodologies and Design Languages", Kluwer Academic, 2002.
- 2. Erbas, C., "System-Level Modelling and Design Space Exploration for Multiprocessor Embedded System-on-Chip Architectures", Amsterdam University Press, 2007.

8 hours

Introduction, Integrated Circuit Manufacturing, CMOS Technology, Integrated Circuit Design Techniques, Fabrication Processes, Transistors, Wires and Vias, Design Rules Layout Design and Tools

Unit-2 | **SoC Architecture Design**

8 hours

Introduction, Front-end chip design, Back-end chip design, Integration platforms and SoC Design, Function Architecture Co-design, Designing Communication Networks, System Level Power Estimation and Modeling, Transaction Level Modeling, Design Space Exploration, Software design in SoCs.

Unit-3 | Basic SoC Subsystem Design

8 hours

Introduction. Subsystem Design Principles. Combinational Shifters. Adders. ALUs. Multipliers. High-Density Memory. Field-Programmable Gate Arrays. Programmable Logic Arrays.

Unit-4 | High level HDL for SoC Design- SystemC

8 hours

Introduction of SystemC, Transaction-Level Modeling (TLM) and Electronic System-Level (ESL) languages, SystemC Class Concepts for Hardware, Overview of SystemC Components.

Unit-5 | **SoC Design and Test Optimization**

8 hours

Design methodologies for SoC, Noise and signal integrity analysis, System Integration issues for SoC, SoC Test Scheduling and Test Integration, SoC Test Resource partition.

Unit-6 Recent trends and applications for SYSTEM ON CHIP DESIGN

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Reconfigurable Computing				
Course Code	MVLS5018				
Prerequisite					
_		L	T	P	C
		3	0	0	3

Understand concept of Reconfigurable Computing and their applications

Course Outcomes

CO1	Understand parallelism and pipelining concepts, the design aspects and challenges.
CO ₂	Evaluate the issues in vector and array processors.
CO3	Study and analyze the high performance scalable multithreaded and multiprocessor
CO4	Know Reconfigurable Design
CO5	know Reconfigurable Devices application
CO6	Understanding of recent trends and applications

Text Book (s)

- 1 C. Maxfield, The Design Warrior's Guide to FPGAs, Newnes, 2004, ISBN: 978-0750676045
- 2 M. Gokhale and P. Graham, Reconfigurable Computing: Accelerating Computation with Field-Programmable Gate Arrays, Springer, 2005, ISBN: 978-0-387-26105-8.
- 3 C. Bobda, Introduction to Reconfigurable Computing: Architectures, Algorithms and Applications, Springer, 2007, ISBN: 978-1402060885.

- 1. P. Lysaght and W. Rosenstiel (eds.), New Algorithms, Architectures and Applications for Reconfigurable Computing, Springer, 2005, ISBN: 978-1402031274.
- 2. D. Pellerin and S. Thibault, Practical FPGA Programming in C, Prentice-Hall, 2005, ISBN: 978-0131543188.
- 3. W. Wolf, FPGA-based System Design, Prentice-Hall, 2004, ISBN: 0-13-142461-0.
- 4. R. Cofer and B. Harding, Rapid System Prototyping with FPGAs: Accelerating the Design Process, Newnes, 2005, ISBN: 978-0750678667.

Unit-1	Introduction of RC	8 hours			
Reconfig	Reconfigurable Computing Basics, Reconfigurable Computing Hardware Components,				
Custom	Computing, Machine Overview, Comparison of Computing Machines,				
Intercon	Interconnects, Delays in VLSI Structures, control path and data path, logic minimization.				
Unit-2	Unit-2 FPGA Architectures 8 hours				
Introduction, Technology-independent optimization, FPGA Mapping, FPGA Partitioning					
and Placement, Routing, Co					

mputing Elements, LUT's, LUT Mapping, ALU and CLB's, Retiming, Multi-FPGA Partitioning, Logic Emulation, Power Reduction Techniques for FPGAs.

Unit-3 | **RC** Architectures

8 hours

Device characteristics, The Systolic Model, Fine-grained architecture, Coarse-grained architecture, Comparison of different architectures, Function-Unit Architectures, Logic Emulation Architectures, Programming Reconfigurable Computers, Logic Cell and Data path Mapping, Hardware/Software Co-design, Systolic Loop Transformations, Software Pipelining, MATRIX and RaPiD, Module Generators.

Unit-4 | **Reconfigurable Design**

8 hours

Temporal portioning algorithms, Online temporal placement, Device space management, Binding Time and Programming Styles, Overheads, Data Density, Data BW, Function density, Function diversity, Interconnect methods, Contexts, Context switching; Area calculations for PE; Efficiency, ISP, Hot Reconfiguration, Partial reconfigurable design and Dynamic Reconfiguration design.

Unit-5 | **RC** Applications

8 hours

Reconfigurable Coprocessors, Reconfigurable Memory Security, Reconfigurable Weather Radar Data Processing, Dynamically Reconfigurable Adaptive Viterbi Decoder, High Speed Data Acquisition System for Space Applications.

Unit-6 Recent trends and applications for Reconfigurable Computing

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Packaging and Interconnect Analysis				
Course Code	MVLS6005				
Prerequisite					
_		L	T	P	C
		3	0	0	3

Course Objectives: Analysis and design for high-performance interconnects at both IC and packaging levels, including interconnect modeling, delay modeling for devices and interconnects, timing-driven placement, interconnect topology construction, buffer insertion, device and wire sizing, clock network design, thermal modeling, analysis, and thermal-based placement **Course Outcomes**

CO1	understand problems in modeling and design of high-performance VLSI
CO ₂	Learn delay calculations
CO ₃	Optimize interconnection and topology
CO4	Know clock design for interconnection
CO5	Demonstrate thermal modelling and analysis
CO6	Understanding of recent trends and applications

Text Book (s)

- 1. M. Celik, L. Pileggi, A. Odabasioglu, IC Interconnect Analysis, Kluwer Academic Publishers, 2002.
- 2. C. K. Cheng, J. Lillis, S. Lin, N. Chang, Interconnect Analysis and Synthesis, John Wiley & Sons, Inc. 2000.

- 1.J. M. Rabaey, A. Chandrakasan, B. Nikoli´c, Digital Integrated Circuits A Design Perspective, Pearson Education, Inc. 2003
- 2. N. Menezes, L. Pileggi, Analyzing On-chip Interconnect Effects, Chapter 16 in Design of High-Performance Microprocessor Circuits, IEEE Press, 2001.
- 3. H. B. Bakoglu, Circuits, Interconnects, and Packaging for VLSI, Addison-Wesley Publishing Company, 1990

Introduction	8 hours			
Introduction, Functions of an electronic packages, Brief history of electronic packaging,				
Hierarchy, Challenges of Interconnect Design, Modeling of VLSI I	Interconnects,			
ansform, Elmore delay model, Moment Computation, Asymptotic w	aveform			
, Pade via Lanczos and transmission line modeling.				
Unit-2 Delay Calculation 8 hours				
Delay calculating: Devices modeling, R(L)C Delay Calculation. Overview of Layout				
Design, and Optimization Techniques. Delay Budgeting, Net-based Timing-driven				
Placement, and Path-base Timing-driven Placement.				
	on, Functions of an electronic packages, Brief history of electronic packages, Challenges of Interconnect Design, Modeling of VLSI lansform, Elmore delay model, Moment Computation, Asymptotic was, Pade via Lanczos and transmission line modeling. Delay Calculation ulating: Devices modeling, R(L)C Delay Calculation. Overview of d Optimization Techniques. Delay Budgeting, Net-based Timing-design.			

Unit-3	Device , Topology and	8 hours
	Interconnect Optimization	

Transistor Ordering, Device Sizing, and Buffer Insertion. Topology Optimization: Wirelength Minimization, Pathlength Minimization, and Delay Minimization. Interconnect Sizing: Local Refinement-based, Dynamic Programming-based, Sensitivity-based, and Mathematical Programming. Simultaneous Device and Interconnect Sizing, Simultaneous Topology Construction, Buffer Insertion, Buffer Sizing, and Interconnect Sizing.

Unit-4 | Clock Design and Noise Modeling

8 hours

Clock Network Design: Zero-Skew, Bounded-Skew, Buffer and Wire Optimization, Non-Tree Routing, and Clock Schedule.

Noise Modeling, Avoiding and Control: Simultaneous Switching Noise, Reflection Noise, Coupling Noise, Power/Ground Design, Topology Selection, Optimal Termination, Track Permutation, Layer Assignment, Buffer Insertion, and Interconnect Sizing and Spacing

Unit-5 | Thermal Modeling and Analysis

8 hours

Thermal Modeling, Analysis, and Thermal-aware Design: Compact Thermal Modeling, Electro-thermal Simulation, Thermal Characterization of Stacked Dies, and Thermal Based Placement

Unit-6 Recent trends and applications for Packaging and Interconnect Analysis

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The Course	EMI and EMC in System Design				
Course Code MVLS6006					
Prerequisite					
_		L	T	P	C
		3	0	0	3

Understand basics of electro-magnetic Interference and describes the concepts of its effects in system designing. The EMI measurements, EMI Control methods and Standards

Course Outcomes

CO1	Understand basic concept of electro-magnetic Interference.	
CO ₂	Know methods for EMI measurements	
CO3	Learn EMC standards and regulations	
CO4	Understands control methods and fixes	
CO5	Design EMC and interconnection	
CO ₆	Understanding of recent trends and applications	

Text Book (s)

Reference Book (s)

reflection losses for electric fie

Unit-1 Basic Concepts	8 hours		
History and concept of EMI, Definition of EMI and EMC with examples, Classification of			
EMI/EMC, Units of Parameters, Sources of EMI, EMI coupling modes, ESD Pho	enomena		
and effects, Transient phenomena and suppression, Electro magnetic environment	ıt,		
Practical experiences and concerns, frequency spectrum conservations, mechanis	sms of		
EMI generation, EMI testing, Methods of elimination of EMI			
Unit-2 EMI Measurements	8 hours		
Basic principles of RE, CE, RS and CS measurements, EMI measuring instruments	nts-		
Antennas, LISN, Feed through capacitor, current probe, EMC analyzer and detec	ction		
technique open area site, shielded anechoic chamber, TEM cell, Natural and man	ımade		
sources of EMI/EMC: Sources of Electromagnetic noise, typical noise paths, mo-	des of		
noise coupling, designing for EM compatibility, lightening discharge, electro star	tic		
discharge (ESD), electro magnetic pulse (EMP).			
Unit-3 EMC Standard and Regulations	8 hours		
National and International standardizing organizations- FCC, CISPR, ANSI, DO	D, IEC,		
CENEEC, FCC CE and RE standards, CISPR, CE and RE Standards, IEC/EN, C	L'S		
standards, Frequency assignment - spectrum conversation, Components for EMC	and EMC		
Standards: Choice of capacitors, inductors, transformers and resistors.			
Unit-4 EMI Control Methods and Fixes 8 hours			
Grounding, Bonding, Filtering, EMI gasket, Isolation transformer, opto isolator, Shielding			
and Bonding: effectiveness of shielding, near and far fields / impedances, methods of			
analysis, total loss due to absorption and reflection effects, composite absorption and			

lds / magnetic fields, magnetic materials as a shield, shield discontinuities, slots and holes, seams and joints, conductive gaskets, Electrical Bonding, Shape and Material for Bond straps.

Unit-5 | **EMC Design and Interconnection Techniques**

8 hours

Cable routing and connection, Component selection and mounting, PCB design-Trace routing, Impedance control, decoupling, Zoning and grounding, Grounding and Cabling: Safety and signal grounds, low and high frequency grounding methods, grounding of amplifiers and cable shields, isolation, neutralizing transformers, shield grounding at high frequencies, digital grounding, types of cables, mechanism of EMI emission / coupling in cables

Unit-6 Recent trends and applications for EMI and EMC in System Design

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The Course	DSP Architecture				
Course Code					
Prerequisite					
	L	_	T	P	C
	3		0	0	3

Identify and formalize architectural level characterization of P-DSP hardware

Ability to design, programming (assembly and C), and testing code using Code Composer Studio environment

Deployment of DSP hardware for Control, Audio and Video Signal processing applications

Understanding of major areas and challenges in DSP based embedded systems

Course Outcomes

CO1	Understand the hardware and software structures used to implement digital signal
	processing.
CO ₂	Describe the details of Architectures For Programmable DSP Devices.
CO3	Describe Programmable Digital Signal Processors TMS320C54XX addressing
	modes, control unit and its operation.
CO4	Implement basic DSP algorithms like FIR and IIR digtal filters.
CO5	Describe interfacing of memory and input output peripherals to programmable DSP
	devices
CO6	Understanding of recent trends and applications

Text Book (s)

- 1. B Venkataramani and M Bhaskar "Digital Signal Processors", TMH, 2002.
- 2. Peter Pirsch "Architectures for Digital Signal Processing", John Weily, 2007.
- 3. Avatar Singh and S. Srinivasan, "Digital Signal Processing", Thomson Learning, 2004 **Reference Book (s)**
- 1. Lars Wanhammer, "DSP Integrated Circuits", 1999 Academic press, New York
- 2.A.V.Oppenheim et.al, "Discrete-time Signal Processing", Pearson Education, 2000.
- 3. Emmanuel C. Ifeachor, Barrie W. Jervis, "Digital signal processing A practical approach", Second Edition, Pearson Education, Asia.
- 4.Keshab K.Parhi, "VLSI Digital Signal Processing Systems design and Implementation", John Wiley & Sons, 1999.

Unit-1	Introduction to Digital Signal Processing
--------	--

8 hours

Introduction, A Digital Signal-Processing System, The Sampling Process, Discrete Time Sequences, Typical DSP Algorithms (Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT), Least Mean Square(LMS)). Representation of Signal Processing Algorithms, Signal-Flow, Data-Flow graphs, Digital Filters, Decimation and Interpolation, Analysis and Design Tool for DSP Systems.

Unit-2 | Architectures For Programmable DSP Devices

8 hours

Basic Architectural features, DSP Computational Building Blocks, Bus Architecture and Memory, Data Addressing Capabilities, Address Generation Unit, Programmability and Program Execution, Speed Issues, Features for External interfacing.

Unit-3 Programmable Digital Signal Processors

8 hours

Commercial Digital signal-processing Devices, Data Addressing modes of TMS320C54XX DSPs,Data Addressing modes of TMS320C54XX Processors, Memory space of TMS320C54XX Processors, Program Control, TMS320C54XX instructions and Programming, On-Chip peripherals, Interrupts of TMS320C54XX processors, Pipeline Operation of TMS320C54XX Processors.

Unit-4 | **Implementation Of Basic DSP Algorithms**

8 hours

The Q-notation, FIR Filters, IIR Filters, interpolation Filters, Decimation filters, PID Controller, Adaptive Filters. Implementation of FFT algorithms.

Unit-5 Interfacing Memory And I/O Peripherals To Programmable Dsp Devices

8 hours

Memory space organization, External bus interfacing signals, Memory interface, Parallel I/O interface, Programmed I/O, Interrupts and I/O, Direct memory access (DMA). A Multichannel buffered serial port (McBSP), McBSP Programming, a CODEC interface circuit, CODEC programming, A CODEC-DSP interface example.

Unit-6 Recent trends and applications for DSP Architecture

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The Course	MIXED SIGNAL IC DESIGN				
Course Code	MVLS6008				
Prerequisite					
		L	T	P	C
		3	0	0	3

Understand basics of Data Converters and describes the concepts of modulator, filters to improve SN and SPICE modeling

Course Outcomes

CO1	Understand basic concept of ADC, DAC
CO ₂	Learn SNR improvement methods
CO3	Know noise shaping data converters
CO4	Design data converters
CO5	Design various filters
CO6	Understanding of recent trends and applications

Text Book (s)

- 1. R. J. Baker, CMOS Mixed Signal Cicuit Design, Wiley/IEEE, 2002.
- 2. Handkiewicz, Mixed-Signal Systems : A Guide to CMOS Circuit Design, Wiley-IEEE, 2002.
- 3. Razavi, Principles of Data Conversion System Design, IEEE Press, 1995

- 1. E. Sanchez-Sinencio and A. G. Andreou, Low-Voltage/Low-Power Integrated Circuits and Systems: Low-Voltage Mixed-Signal Circuits, IEEE, 1999.
- 2. Y. Tsividis, Mixed Analog-Digital VLSI Devices and Technology, MH, 1996.
- 3. S. Rabii and B. A. Wooley, Design of Low-Voltage Low-Power Sigma-Delta Modulators, Kluwer, 1998.
- 4. P. G. A. Jespers, Integrated Converters: D-A and A-D Architectures, Analysis and
- 5. Simulation, OUP, 2001.
- 6. R. Van de Plassche, Integrated Analog-to-Digital and Digital-to-Analog Converters Kluwer, 1994.

Unit-1 Data Converters

8 hours

Data Converters: Introduction, Characteristic Parameters, Basic DAC and ADC Architectures. Sampling and Aliasing, SPICE models for DACs and ADCs, Quantization Noise.

Unit-2 | **Data Converters SNR**

8 hours

Clock Jitter, Improving SNR using Averaging, decimating filters for ADC's, Interpolating filters for DAC's, Band pass and high pass Sinc filters, using feedback to improve SNR.

Unit-3 Noise Shaping Data Converters

8 hours

Noise Shaping data converters: SPICE model, First order noise shaping, First order Noise Shaping, - Digital first order NS Modulators, Modulation Noise, Decimating and filtering the output of a NS Modulator, Analog Sync filter using SPICE, Analog Implementation of First order NS Modulator, Feedback DAC, Forward modulator, op-amp. Second order Noise Shaping.

Unit-4 | **Implementing Data Converters**

8 hours

Implementing data converters: R-2R topologies for DAC's – Current mode, voltage mode, wide swing current mode DAC, topologies without an op-amp, effects of op-amp parameters. Implementing ADC's- Implementing S/H,Cyclic ADC, Pipeline ADC using 1.5 bits per stage, capacitor error averaging, comparator placement, clock generation, offsets and alternative topologies, Layout of Pipelined ADC's.

Unit-5 | Filters | 8 hours

Low Pass filters, active RC integrators, Effect of parameters of Integrator, MOSFET-C integrators, transconductance-C integrator, discrete time integrators. Filtering topologies - bilinear transfer function and biquadratic transfer function

Unit-6 Recent trends and applications for MIXED SIGNAL IC DESIGN

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Name of The Course	RESEARCH SEMINAR				
Course Code	MVLS9997				
Prerequisite					
		L	T	P	C
		0	0	2	1

- 1. To make literature survey for various recently emerging technologies.
- 2. To select any topic of interest and to review the related literature in detail.
- 3. To compare and analysis the various topologies for the selected topic of interest.
- 4. To conclude the advantage, drawbacks and future scope of the technique.

Course Outcomes

CO1	Get familiar with the recently advanced techniques.
CO ₂	Get detailed information about the topic of interest.
CO ₃	Know how to do literature survey.
CO4	Develop the interest in research in area of VLSI Design

Text Book (s)

Depending upon the area of interest student may choose any text book of relevant field

Internal Assessment (IA)	End Term Test (ETE)(Presentaion)	Total Marks
50	50	100