

Vision

To be a Centre of Excellence for imparting high end research and technical education in Civil Engineering producing socially aware professionals to provide sustainable solutions to global community.

Mission

M1: To impart quality education and mould technically sound, ethically responsible professionals in the field of Civil Engineering.

M2: Collaborate with industry and society to design a curriculum based on the changing needs of stakeholders and provide excellence in delivery and assessment.

M3: Establish state-of-the-art facilities for world class education and research.

M4: To mentor students in pursuit of higher education, entrepreneurship and global professionalism.

PEOs

PEO1: Graduates shall attain state of the art knowledge in the different streams of Civil Engineering and be trained for playing the role of competent Civil Engineer in multidisciplinary projects.

PEO2: Graduates shall be capable of pursuing productive careers in private and government organizations at the national and international level and to become successful entrepreneurs.

PEO3: Graduates shall display a high sense of social responsibility and ethical thinking and develop sustainable engineering solutions.

PSOs

PSO1: Develop the ability to implement emerging techniques to plan, analyze, design, execute, manage, maintain and rehabilitate systems and processes in structural engineering.

PSO2: Excel in research, innovation, design, problem solving using different softwares and artificial intelligence and develop an ability to interact and work seamlessly in multidisciplinary environment.

POs

PO1: Apply the knowledge of Mathematics, Science, and Engineering fundamentals, and an engineering specialization to solution of complex engineering problems (Engineering Knowledge)

PO2: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences (Problem analysis)

PO3: Design of solutions for complex engineering problems and design of system components or processes that meet the specified needs with appropriate considerations of public health and safety, and cultural, societal, and environmental considerations (Design/development of solutions)

PO4: Use research based methods including design of experiments, analysis and interpretation of data and synthesis of information leading to logical conclusions (Conduct investigations of complex problems)

PO5: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling complex engineering activities with an understanding of limitations (Modern tool usage)

PO6: Apply reasoning within the contextual knowledge to access societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The engineer and society)

PO7: Understand the impact of the professional engineering solutions in the societal and environmental contexts, and demonstrate the knowledge of, and the need for sustainable developments (Environment and sustainability)

PO8: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice (Ethics)

PO9: Function effectively as an individual independently and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and team work)

PO10: Communicate effectively on complex engineering activities with the engineering community and with society at large such as being able to comprehend and write effective reports and design documentation, make effective oral presentations, and give and receive clear instructions (Communication)

PO11: Demonstrate knowledge and understanding of engineering management principles and apply those to one's own work as a member and leader of a team to manage projects in multidisciplinary environments (Project management and finance)

PO12: Recognize the need for, and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change (Life-long Learning).

Curriculum

		Semester 1							
Sl.	Course Code	Name of the Course					Assess	ment Pat	tern
No	Course Coue		L	T	P	C	IA	MTE	ETE
1	CENG5001	Professional and Communication Skills	0	0	4	2	50	-	50
2	MATH5001	Advanced Numerical and Statistical Methods	3	1	0	4	20	30	50
3	MSTR5001	Structural Dynamics	3	0	0	3	20	30	50
4	MSTR5002	Matrix Methods of Structural Analysis	3	0	0	3	20	30	50
5	MSTR5003	Advanced Concrete Technology	3	0	0	3	20	30	50
6	MSTR5004	Design of Concrete Structural Systems	3	0	0	3	20	30	50
7	MSTR5005	Matrix methods of Structural Analysis Lab (STAAD PRO)	0	0	2	1	50	-	50
8	MSTR5006	Design of Concrete and Structural Systems Lab (STAAD PRO)	0	0	2	1	50	-	50
		Total Credit				20			
	T	Semester II	1						
Sl.	Course Code	Name of the Course	T	T	l n			ment Pat	
No 1	MSTR6001	Finite Element Analysis	1 <u>L</u>	T	P	C	1A 20	MTE 30	ETE 50
2	MSTR6001 MSTR6002	Theory of Elasticity and Plasticity	3	0	0	3	20	30	50
3	MSTR6002 MSTR6003		3	0	0	3	20	30	50
4	WISTROOS	Limit State Design of Steel Structures Elective – 1	3	0	0	3	20	30	50
		Elective – 1 Elective – 2	3	Ť	Ů	3		30	50
5				0	0		20		
6		Elective – 3	3	0	0	3	20	30	50
7	MSTR6004	Structural Engineering lab (CASTING)	0	0	2	1	50	-	50
8	MSTR6005	Finite Element Analysis Lab (STAAD PRO)	0	0	2	1	50	-	50
		Total Credit				20			
		Semester III							
Sl	Course Code	Name of the Course						ment Pat	
No	Course coue		L	T	P	C	IA	MTE	ETE
1	MSTR7001	Application of Numerical Methods in Structural Engineering	3	0	0	3	20	30	50
2		Elective – 4	3	0	0	3	20	30	50
3		Elective – 5	3	0	0	3	20	30	50
4	MSTR7002	Seminar (or)Mini Project	-	-	2	1	50	-	50
5	MSTR7003	Comprehensive Examination	_	† -	-	2	50	_	50

6	MSTR7004	Project (Phase I)	0	0	0	5	50	-	50
		Total Credit				17			
	Semester IV								
~									
Sl	Course Code	Nome of the Course					Assess	ment Pat	tern
SI No	Course Code	Name of the Course	L	T	P	C	Assess IA	ment Pat MTE	tern ETE
	Course Code MSTR8001	Name of the Course Project (Phase II)	L 0	T	P 0	C 15			

List of Electives (Total Credits to be earned = 15)

Sl	Course Code	Name of the Electives					Assessment Pattern		
No	Course Code	Name of the Electives	L	T	P	C	IA	MTE	ETE
1	MSTR6010	Advanced Foundation Engineering	3	0	0	3	20	30	50
2	MSTR6011	Design of Concrete Bridges	3	0	0	3	20	30	50
3	MSTR6012	Design of Industrial Structures	3	0	0	3	20	30	50
4	MSTR6013	Earthquake Resistant Design	3	0	0	3	20	30	50
5	MSTR6014	Design of Tall Buildings	3	0	0	3	20	30	50
6	MSTR6015	Energy Efficient Buildings	3	0	0	3	20	30	50
7	MSTR6016	Environmental Engineering Structures	3	0	0	3	20	30	50
8	MSTR6017	Experimental Stress Analysis	3	0	0	3	20	30	50
9	MSTR6018	Machine Foundations	3	0	0	3	20	30	50
10	MSTR6019	Maintenance & Rehabilitation of Structures	3	0	0	3	20	30	50
11	MSTR6020	Theory and Design of Plates & Shells	3	0	0	3	20	30	50
12	MSTR6021	Off Shore Structures	3	0	0	3	20	30	50
13	MSTR6022	Prefabricated Structures	3	0	0	3	20	30	50
14	MSTR6023	Pre-stressed Concrete Structures	3	0	0	3	20	30	50
15	MSTR6024	Soil Structure Interaction	3	0	0	3	20	30	50
16	MSTR6025	Stability of Structures	3	0	0	3	20	30	50
17	MSTR6026	Structural Optimization	3	0	0	3	20	30	50
18	MSTR6027	Composite Structures	3	0	0	3	20	30	50

Detailed Syllabus

Name of The Course	Structural Dynamics				
Course Code	MSTR5001				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	T	P	C
		3	0	0	3

- 1. To find the behaviour of structures subjected to dynamic loads such as wind, earthquake and blast loads.
- 2. To study different dynamic analysis procedures for calculating response of structures.

Course Outcomes

On completion of this course, the students will be able to

CO1	Solve the problems on single degree of freedom system.				
CO2	Understand the concept of harmonic loading and				
002	impulse loading and the related analysis procedures.				
CO3	Understand the concept of multi degree of freedom				
COS	system.				
CO4	Evaluate the mode shapes for different structures.				
CO5	Know the orthogonality condition				
CO6	Discuss on Latest Research Paper.				

Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment (IA)	Exam (MTE)	Exam (ETE)	Marks
20	30	50	100

Course Content:

Unit I: SDOF Systems

8 Lecture Hours

Single Degree of Freedom System - Introduction - Alembert's principle - Mathematical models for SDOF systems - Free vibration - Damped and undamped - Critical damping - Logarithmic decrement.

Unit II: Harmonic and Impulse Loading

8 Lecture Hours

Response to Harmonic Loading and Impulse Loading - Analysis of undamped system - damped system - general dynamic loading.

Unit III: Vibration Analysis

8 Lecture Hours

Vibration Analysis - Rayleigh's method - Approximate Analysis - Improved Rayleigh method.

Unit IV: MDOF System

8 Lecture Hours

Multi degree of Freedom System - Evaluation of structural property matrices - Mode shape - Orthogonality conditions - Undamped and damped system - Mode superposition method.

Unit V: Continuous Systems

8 Lecture Hours

Continuous Systems - Differential equation of motion - Transverse vibration of linearly elastic beams - Analysis of undamped free vibration of simply supported and cantilever beams - Orthogonality condition.

Unit VI: Discussion on Latest Research Paper

2 Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

- 1. Mario Paz, (2004), Structural Dynamics Theory and Computation, Second Edition, CBS Publishers, ISBN-13: 9788123909783.
- 2. J. Humar, (2012), Dynamics of Structures, Third Edition, CRC Press, ISBN- 13: 9780415620864.
- 3. Anil K. Chopra, (2003), Dynamics of Structures Theory and Applications to Earthquake Engineering, Third Edition, Pearson India, ISBN-13: 9788131713297.

Name of The	Matrix Methods of Structural				
Course	Analysis				
Course Code	MSTR5002				
Prerequisite	Structural Analy	ysis			
Co-requisite	-				
Anti-requisite	-				
_		L	T	P	C
		3	0	0	3

Course Objectives

- 1. The course is intended to teach the basic concepts of indeterminate structures, static indeterminacy and kinematic indeterminacy.
- 2. Different matrix methods will be taught and their uses will be explained in the class.

Course Outcomes

On completion of this course, the students will be able to

ix method

CO2	Visualize and analyze plane trusses and plane frames.
CO3	Understand the effect of settlement of supports.
CO4	Analyze space trusses and plane frames.
CO5	Solve any problem on grid.
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam (MTE)	Exam	Marks
(IA)		(ETE)	
20	30	50	100

Course Content:

On completion of this course, the students will be able to

Unit I: Introduction to flexibility matrix and stiffness matrix. 8 Lecture Hours

Concept of static indeterminacy and kinematic indeterminacy – concept of flexibility matrix and stiffness matrix – properties of matrices – coordinate system – solution of simple problems – derivation of stiffness matrix of beam element from strain energy.

Unit II: Analysis of plane structures by flexibility matrix method

8 Lecture Hours

Analysis of continuous beam, plane truss and plane frame by flexibility matrix method – Internal forces due to thermal expansion and lack of fit – effect of settlement of supports.

Unit III: Analysis of plane structures by stiffness matrix method

8 Lecture Hours

Analysis of continuous beam, plane truss and plane frame by stiffness matrix method – Internal forces due to thermal expansion and lack of fit – effect of settlement of supports

Unit IV: Space truss

8 Lecture Hours

Analysis of space truss by flexibility matrix method and stiffness matrix method.

Unit V: Analysis of space structures by stiffness matrix method

8 Lecture Hours

Analysis of space frame and grid structures by stiffness matrix method

Unit VI: Discussion on Latest Research Paper

2 Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

- 1. Pundit G.S. & Gupta S.P., (2008), Structural Analysis (A matrix approach), Second Edition, Tata McGraw Hill Education, ISBN-13: 9780070667358.
- 2. J. S. Przemieniecki, (1985), Theory of Matrix Structural Analysis, New Edition, Dover Publication, ISBN-13: 97804866494.
- 3. Richard B. Nelson, Lewis P. Felton, (1997), Matrix Structural Analysis, John Wiley & Sons, Imported Edition, ISBN-13: 9780471123248.

Name of The	Advanced Concrete Technology				
Course					
Course Code	MSTR5003				
Prerequisite	Concrete Technolo	ogy			
Co-requisite	-				
Anti-requisite	-				
		L	T	P	C
		3	0	0	3

Course Objectives

- 1. This course mainly aims to develop the knowledge about properties of cement concrete and importance of admixtures in concrete.
- 2. To make the students to understand Mix Design Method.

Course Outcomes

On completion of this course, the students will be able to

CO1	Know the various materials used in concrete and admixtures
CO2	Do the Mix design by different methods.
CO3	Get a thorough knowledge of various types of cement, aggregates and properties of special concrete
CO4	Know the different procedures for testing concrete.
CO5	Understand different types of special concrete.
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam (MTE)	Exam	Marks
(IA)	, ,	(ETE)	
20	30	50	100

Course Content:

Unit I: Material, reinforcement and admixtures

8 Lecture Hours

Materials - Concrete materials - Reinforcements and admixtures.

Unit II: Mix design

8 Lecture Hours

Mix Design – Specifications - Design of concrete mixes by IS code method - ACI method - Road Note No: 4 methods – High strength concrete

Unit III: Modern trends in concrete

8 Lecture Hours

Behaviour of Concrete - Modern trends in concrete manufacture and placement techniques- Behaviour of fresh concrete and hardened concrete - Resistance to static and dynamic loads.

Unit IV:Concrete testing

8 Lecture Hours

Testing of Concrete - Non-destructive testing and quality control – Durability - Corrosion protection and fire resistant.

Unit V: Special concrete

8 Lecture Hours

Special Concrete - Pre-cast concrete - Light weight concrete - Under water concrete - Pump concrete - Polymer concrete - Composites and fibre reinforced concrete.

Unit VI: Discussion on Latest Research Paper

2 Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

- 1. Shetty. M. S., (2008), Concrete Technology, Seventh Edition,
- S. Chand & Company Ltd.ISBN-13: 9788121900034.
- 2. M. L. Gambhir, (2013), Concrete Technology, Fifth Edition, McGraw Hill Education India Pvt. Ltd., ISBN-13: 9781259062551.
- 3.A. R. Santha Kumar, (2006), Concrete Technology, First Edition, Oxford University Press, ISBN-13: 9780195671537.

Name of The	Design of Concrete Structural				
Course	Systems				
Course Code	MSTR5004				
Prerequisite	Design of Concrete Structures				
Co-requisite	-				
Anti-requisite	-				
_		L	T	P	C
		3	0	0	3

Course Objectives

- 1. This subject is intended to teach the concept of advanced concrete design.
- 2. The practical aspects of various designs of structure will be explained in the classes

Course Outcomes

On completion of this course, the students will be able to

CO1	Understand rotation capacity of a RC section and
COI	moment curvature relationship.
CO2	Analyse and design deep beams.
CO3	Design flat slabs.
CO4	Understand the concept of designing slender columns

	and shear walls.
CO5	Design different types of water tanks
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam (MTE)	Exam	Marks
(IA)		(ETE)	
20	30	50	100

Course Content:

Unit I: Limit state design of beams

8 Lecture Hours

Limit state analysis and design of beams in flexure - Behaviour of reinforced concrete - Members in bending - Plastic hinge - Rotation capacity - Factors affecting rotation capacity - of a section -Plastic moment - Moment curvature relationship - Redistribution of moments.

Unit II: Deep beams

8 Lecture Hours

Limit state design of deep beams

Unit III: Flat Slabs

8 Lecture Hours

Design of Flat Slabs using BIS 456

Unit IV: Columns and shear walls

8 Lecture Hours

Design of slender columns subjected to combined bending moment and axial force using SP: 16, Design of shear walls, Ductile detailing.

Unit V: Design of Water Tanks

8 Lecture Hours

Types of water tanks, Design of underground rectangular water tanks, Design of overhead water tank (Intze type tank), Design of staging

Unit VI: Discussion on Latest Research Paper

2 Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

- P. C. Varghese, (2009), Advanced Reinforced Concrete Design, Second Edition, Phi Learning Pvt. Ltd., ISBN-13: 9788120327870.
- M. L. Gambhir, (2009), Design of Reinforced Concrete Structures, First Edition, Phi Learning Pvt. Ltd., ISBN-13: 9788120331938.

- 3. P. Dayaratnam, (2011), Design of Reinforced Concrete Structures, Fourth Edition, Oxford & IBH Pubs Company, ISBN-13: 9788120414198.
- B. C. Punmia, Ashok Kr. Jain, Arun Kr. Jain, (2006), R. C.
 C. Designs, Laxmi Publication (P) Ltd., ISBN-13: 9788131809426.

Name of The	Finite Element Analysis				
Course					
Course Code	MSTR6001				
Prerequisite	Matrix Methods of Analysis	Stru	ctur	al	
Co-requisite	-				
Anti-requisite	-				
		L	T	P	C
		3	0	0	3

- 1. The course is intended to teach the basic concepts of finite element analysis.
- 2. The practical application of finite element method and their advantages and disadvantages will be explained in the class.

Course Outcomes

On completion of this course, the students will be able to

CO1	Carry out finite element analysis of beam.
CO2	Understand the concept of displacement polynomials
CO3	Analyse plane trusses, plane frames and grids.
CO4	Calculate strain-displacement matrix and stress-strain matrix for plane stress elements.
CO5	Know the concepts of isoparametric elements.
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment	Mid Term Exam (MTE)	End Term Exam	Total Marks
(IA)		(ETE)	
20	30	50	100

Course Content:

Unit I: Introduction to FEM	
	8 Lecture Hours

Introduction - Background - General description of the method – Analysis procedure - Stress and strain vectors – Stain displacement equations – Linear constitutive equations – Overall stiffness matrix – Overall load matrix - Analysis of beams.

Unit II: Displacement models

8 Lecture Hours

Theory of Finite Element - Concept of an element - Various elements shapes - Displacement polynomials - Convergence requirements - Shape functions - Element strains and stresses - Direct formulation of element stiffness matrix for beam element and plane truss element

Unit III: Analysis of structures by FEM

8 Lecture Hours

Overall Problems - Discretization of a body or structure - Minimization of band width - Construction of stiffness matrix and loads for the assemblage - Boundary conditions - Analysis of plane truss, space truss, plane frame and grid.

Unit IV: Plane stress and plane strain

8 Lecture Hours

Plane stress - Plane strain - CST, LST & QST elements - Rectangular element - solutions of problems.

Unit V: Isoparametric elements

8 Lecture Hours

Natural Coordinate - Isoparametric Formulation - Natural coordinates (area and volume) - Isoparametric Bar element - Plane bilinear isoparametric element - Plane stress element - Quadratic plane stress elements - Application of Gauss Quadrature formulation.

Unit VI: Discussion on Latest Research Paper

2 Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

- 1. C. S. Krishnamoorthy, (2008), Finite Element Analysis, Second Edition, Tata McGraw Hill Education Pvt. Ltd., ISBN-13: 978007462100.
- 2. Cook R. D., Malkas D. S. &Plesha M. E, (2008), Concepts and applications of Finite element analysis, Fourth Edition, Wiley India Pvt. Ltd., ISBN-13: 9788126513369.
- 3. Reddy, (2005), An Intro. To The Finite Element Methods, Third Edition, Tata McGraw Hill Education Pvt. Ltd., ISBN-13: 9780070607415.

Name of The Course	Theory of Elasticity and Plasticity				
Course Code	MSTR6002				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	T	P	C
		3	0	0	3

Course Objectives

1. This subject is taught to impart knowledge on theory of elasticity and plasticity.

Course Outcomes

On completion of this course, the students will be able to

CO1	Analyse the stresses and strains for two dimensional and three dimensional elements.
CO2	Understand the equilibrium and compatibility conditions.
CO3	Know the concept of Prandle's membrane analogy.
CO4	Solve the problems on Torsion for different shaped bars.
CO5	Understand the concept of plasticity.
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment	Mid Term Exam (MTE)	End Term Exam	Total Marks
(IA)		(ETE)	
20	30	50	100

Course Content:

Unit I: Stresses and strains

8 Lecture Hours

Analysis of Stress and Strain - Elasticity approach - Definition and notation of stress - Components of stress and strain - Generalized Hooke's law -Two dimensional Problems in Cartesian Coordinates - Plane stress and plain strain problems with practical examples - Equations of equilibrium and compatibility conditions in Cartesian coordinates - Airy's stress function - Bending of simply supported beams.

Unit II: Axi-symmertic problems

8 Lecture Hours

Two dimensional Problems in Polar Coordinates - Equations of equilibrium and compatibility conditions in polar coordinates - Axi-symmetrical problems - Thick cylinder under uniform pressure - Circular arc beams subjected to pure bending

Unit III: Prandle's membrane analogy

8 Lecture Hours

Principal stresses and strains for three dimensional element – Equations of equilibrium and compatibility conditions for 3D problems in Cartesian co-ordinates - Transformation of stresses and strains.

Unit IV: Torsion

8 Lecture Hours

Torsion - Torsion of various shaped bars - Pure torsion of prismatic bars - Prandtle's membrane analogy - Torsion of thin walled tubes and hollow shafts.

Unit V: Introduction to plasticity

8 Lecture Hours

Introduction to plasticity – Stress – Strain diagram – Plastic analysis – Yield criteria – St. Venant's theory – Von Mises criterion – Plastic work – Strain hardening.

Unit VI: Discussion on Latest Research Paper

2 Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. Timoshenko and Goodier, (1970), Theory of Elasticity, Third Edition, McGraw Hill

Professional, ISBN-13: 9780070858053.

- 2. Srinath, (2002), Advanced Mechanics of Solids, Third Edition, Tata McGraw Hill Pvt. Ltd., ISBN-13: 9780070139886.
- 3. D. Peric, E. A. de Souza Neto& D. R. J. Owen, (2011), Computational Methods for

Plasticity, Wiley, ISBN-13: 9781119964544.

Name of The	Limit State Design	Limit State Design of Steel Structures			
Course					
Course Code	MSTR6003	MSTR6003			
Prerequisite	-	-			
Co-requisite	-	-			
Anti-requisite	-				
		L	T	P	C
		3	0	0	3

Course Objectives

1. To know how to design and use the different types of steel structural elements.

Course Outcomes

On completion of this course, the students will be able to

CO1	Design different types of connections.
CO2 Design members for pitched roof truss, bracings and purlins.	
CO3	Understand the design of plate girders and gantry girders.
CO4	Design chimney.
CO5	Understand the concept of plastic analysis.
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam (MTE)	Exam	Marks
(IA)		(ETE)	
20	30	50	100

Course Content:

Unit I: Eccentric and Moment Connections

8 Lecture Hours

Different types of beam-column connections – Design of rigid and semi rigid connection.

Unit II: Industrial Buildings

8 Lecture Hours

Roof Trusses - Calculation of dead load, live load and wind load - Design of joints - Design of members for pitched roof truss - Bracings - Design of Purlins.

Unit III: Plate Girder and Gantry Girder

8 Lecture Hours

Elements of plate girders – Shear strength of web - Design of plate girders - Curtailment of flange plates – Design of stiffeners – Design of gantry girder.

Unit IV: Chimney

8 Lecture Hours

Calculation of wind load and seismic load, Design of chimney, Design of foundation of chimney

Unit V: Plastic Analysis

8 Lecture Hours

Plastic Analysis of Structures – Introduction - Shape factors – Mechanisms - Plastic hinge - Analysis of beams and portal frames - Design of continuous beams.

Unit VI: Discussion on Latest Research Paper

2 Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

- 1. Dayarathnam. P., (1996), Design of Steel Structures, Second Edition, S. Chand and Publishers, ISBN-13: 0788121923200.
- 2. Duggal S. K., (2014), Limit State Design of Steel Structures, Second Edition, McGraw Hill, ISBN-13: 9789351343509.
- 3. Ramchandra, VirendraGehlot, (2010), Limit State Design of Steel Structures: Based on IS: 800-2007 IN S. I. Units, Scientific Publishers, ISBN-13: 9788172336141.

Name of The	Application of Numerical Methods in				
Course	Structural Engineer	Structural Engineering			
Course Code	MSTR7001				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	T	P	C
		3	0	0	3

Course Objectives

1. This subject is taught to impart knowledge on numerical methods in structures.

Course Outcomes

On completion of this course, the students will be able to

CO1	Solve the linear simultaneous equations
CO2	Use the Finite difference method.
CO3	Calculate bending moment, slope and deflection for beams using Simpson's rule and Gauss Quadrature
	method
CO4	Understand the concept of finite strip method of analysis of plates.
CO5 Evaluate the eigen values and eigen vectors for stab problems	
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment	Mid Term Exam (MTE)	End Term Exam	Total Marks
(IA)	Exam (WHE)	(ETE)	Marks
20	30	50	100

Course Content:

Unit I: Simultaneous equations

8 Lecture Hours

Solution of linear simultaneous equations — Gauss elimination method, Gauss-Jordan method, Gauss-Siedal method - Banded - Semi-banded matrix—Skyline technique.

Unit II: Finite difference method

8 Lecture Hours

Finite difference method – Solution of simultaneous equations – Bending moment - Slope and deflection in beams - Membrane analogy using finite difference method for slabs-slope and deflection of slabs.

Unit III: Numerical methods

8 Lecture Hours

Numerical Methods – Numerical integration (Trapezoidal and Simpson's rule) for determining shear, moment and deflection in beams– Gauss Quadrature formula.

Unit IV: Finite Strip method for analysis of plates

8 Lecture Hours

Finite Strip Method – Shape Functions – Strain - Displacement Relationship – Strip Stiffness Matrix – Load Matrix – Solution of Problems.

Unit V: Eigen values and Eigen Vectors

8 Lecture Hours

Mass Matrix - Stiffness matrix - Dynamic Analysis - Eigen values & Eigen Vectors

Unit VI: Discussion on Latest Research Paper

2 Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. N. Krishnaraju& K. U. Muthu, (2008), Numerical Methods for Engineering problems,

Second Edition, Macmillan India Ltd., ISBN-13: 9780333924242.

- 2. Jain M. K., Iyengar, R. K. & Jain R. K. (2004), Numerical Methods: Problems and Solutions, Second Edition, New Age International (P) Ltd., ISBN-13: 9788122415346.
- 3. Klaus-Jsrgan Bathe, (2008), Finite Element Procedures, First Edition, Prentice Hall of India, ISBN-13: 9788120310759.

Name of The Course	Matrix Methods of Structural Analysis Lab (STAAD PRO)				
Course Code	MSTR5005				
Prerequisite	MSTR5002				
Co-requisite	-				
Anti-requisite	-				
		L	T	P	C
		0	0	2	1

Course Objectives

- 1. This subject is taught to impart knowledge on Matrix Methods of Structural Analysis using STAAD-PRO software package.
- 2. The practical application of the STAAD-PRO software package will be taught.

Course Outcomes

On completion of this course, the students will be able to

CO1	Use STAAD PRO software package for analysis of			
COI	different types of structures.			
CO2	Use STAAD PRO software package for drawing shear			
force diagram and bending moment diagram				
CO3	Understand the behaviour of different types of			
003	structures.			
CO4	Understand the deflected shape of different types of			
	structures.			

Continuous	Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam (MTE)	Exam	Marks
(IA)		(ETE)	
50	-	50	100

Course Content:

List of Experiments:

- 1. Analysis of propped cantilever beam
- 2. Analysis of two span continuous beams
- 3. Analysis of statically determinate plane truss
- 4. Analysis of statically indeterminate plane truss
- 5. Analysis of kinematically indeterminate plane truss
- 6. Analysis of one bay one storey plane frame
- 7. Analysis of multi bay multi storied plane frame
- 8. Analysis of space truss
- 9. Analysis of grid
- 10. Analysis of space frame

Suggested Reading

- 1. STAAD Pro details from Internet
- 2. Videos form Internet.

Name of The	Design of Concrete and Structural				
Course	Systems lab (STA	Systems lab (STAAD PRO)			
Course Code	MSTR5006				
Prerequisite	MSTR5004				
Co-requisite	-				
Anti-requisite	-				
		L	T	P	C
		0	0	2	1

Course Objectives

- 1. This subject is taught to impart knowledge on design of concrete structures using STAAD-PRO software package.
- 2. The practical application of the STAAD-PRO software package will be taught.

Course Outcomes

On completion of this course, the students will be able to

CO1	Design continuous beams	
CO2	Design deep beams	
CO3	Design columns	
CO4	Design shear walls	

Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam (MTE)	Exam	Marks
(IA)		(ETE)	
50	-	50	100

Course Content:

List of Experiments:

- 1.Design of Continuous beams
- 2. Design of Deep beams
- 3. Design of Columns
- 4. Design of Shear walls

Suggested Reading

- 1. STAAD Pro details from Internet
- 2. Videos form Internet.

Name of The	Structural Engineering Laboratory				
Course	(CASTING)				
Course Code	MSTR6004				
Prerequisite	MSTR5003				
Co-requisite	-				
Anti-requisite	-				
		L	T	P	C
		0	0	2	1

Course Objectives

- 1. To teach students different types of testing of concrete structures.
- 2. To enable the students to know the behaviour of RCC structures.

Course Outcomes

On completion of this course, the students will be able to

CO1	Design concrete mix for particular grade of concrete
CO2	Test concrete beams for various loading conditions
CO3	Perform non-destructive testing

Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam (MTE)	Exam	Marks
(IA)		(ETE)	
50	-	50	100

Course Content:

List of Experiments:

- 1. To determine the compressive strength of fibre reinforced concrete by testing cubes specimen.
- 2. Casting and testing of simply supported RCC beams for flexural failure.
- 3. Casting and testing of simply supported RCC beams for shear failure.
- 4. To determine tensile strength on a steel reinforcement bar.
- 5. To determine shear strength of steel bar under double shear.
- 6. To conduct bending test of I-section steel beam.

- 7. To conduct bending test of steel channel section.
- 8. To study rebound hammer test on concrete blocks.
- 9. To study ultra sonic pulse velocity test

Suggested Reading

- 1. Shetty. M. S., (2008), Concrete Technology, Seventh Edition,
- S. Chand & Company Ltd. ISBN-13: 9788121900034.
- 2. M. L. Gambhir, (2013), Concrete Technology, Fifth Edition, McGraw Hill Education India Pvt. Ltd., ISBN-13: 9781259062551.
- 3. Videos form Internet.

Name of The	Finite Element Analysis Lab (STAAD				
Course	PRO)				
Course Code	MSTR6005				
Prerequisite	MSTR5005				
Co-requisite	-				
Anti-requisite	-				
	_	L	T	P	C
		0	0	2	1

Course Objectives

- 1. To teach the students to understand the finite element analysis of different types of structures.
- 2. To enable the students to know the details of the STAAD-PRO software package.

Course Outcomes

On completion of this course, the students will be able to

	Understand the use of STAAD-PRO software package
CO1	for finite element analysis of different types of
	structures.
CO2	Use STAAD-PRO software package for drawing shear
COZ	force diagram and bending moment diagram.
CO3	Understand the behaviour of different types of
COS	structures.
CO4	Understand the deflected shape of different types of
CO4	structures.

Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam (MTE)	Exam	Marks
(IA)		(ETE)	
50	-	50	100

Course Content:

List of Experiments:

- 1. Analysis of three span continuous beams.
- 2. Analysis of propped cantilever beam.

- 3. Analysis of statically determinate plane truss.
- 4. Analysis of statically indeterminate plane truss.
- 5. Analysis of one bay one storey plane frame.
- 6. Analysis of two bays one storey plane frame.
- 7. Analysis of a 2-D building frame subjected to dead load, live load and seismic load.
- 8. Analysis of grid.

Suggested Reading

- 1. STAAD Pro details from Internet
- 2. Videos form Internet.

Name of The	Seminar				
Course					
Course Code	MSTR7002				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	T	P	C
		0	0	2	1

Course Objectives

- 1. To make literature survey for various recently emerging technologies.
- 2. To select any topic of interest and to review the related literature in detail.
- 3. To compare and analyze the various topologies for the selected topic of interest.
- 4. To conclude the advantages, drawbacks and future scopes of the technique.

Course Outcomes

On completion of this course, the students will be able to

CO1	Get familiarity with the recently advanced techniques.
CO2	Get detailed information about the topic of interest
CO3	Know how to do literature survey.
CO4	Develop the interest in different research areas of
	Structures.

Continuous Assessment Pattern

Internal Assessment	Mid Term Exam (MTE)	End Term Exam	Total Marks
(IA)		(ETE)	
50	-	50	100

Suggested Reading

1. Depending upon their area of interest, students may choose any text book of relevant field or any article from Journal

2. Depending upon their area of interest, students may choose any reference book of relevant field.

Name of The Course	Mini Project				
Course Code	MSTR7002				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	T	P	C
		0	0	2	1

Course Objectives

- 1. To make literature survey for various recently emerging technologies.
- 2. To select any topic of interest and to review the related literature in detail.
- 3. To compare and analyze the various topologies for the selected topic of interest.
- 4. To conclude the advantages, drawbacks and future scopes of the technique.

Course Outcomes

On completion of this course, the students will be able to

CO1	Get familiarity with the recently advanced techniques
CO2	Get detailed information about the topic of interest.
CO3	Know how to do literature survey
CO4	Develop the interest in different research areas of
CO4	Structures.

Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam (MTE)	Exam	Marks
(IA)		(ETE)	
50	-	50	100

- 1. Depending upon their area of interest, students may choose any text book of relevant field or any article from Journal.
- 2. Depending upon their area of interest, students may choose any reference book of relevant field.

Name of The	Project (Phase I)				
Course					
Course Code	MSTR7004				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	T	P	C
		0	0	0	5

- 1. To develop the capacity of students in correlating theoretical knowledge into practical systems either to perform creative works or to perform analysis and hence to suggest solutions to problems, pertaining to civil engineering domain.
- 2. Foster collaborative learning skills.
- 3. Develop self-directed inquiry and life-long skills.
- 4. To enhance the communication skills of the students by providing opportunities to discuss in groups and to present their observations, findings and report in formal reviews both in oral and written format.

Course Outcomes

On completion of this course, the students will be able to

CO1	Submit a project synopsis comprising of the application	
COI	and feasibility of the project	
CO2	Design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health care, safety and sustainability.	
CO3	Work and communicate efficiently in multidisciplinary teams.	
CO4	CO4 Identify, formulate, and solve engineering problems.	
CO5	Develop an understanding of professional and ethical responsibility.	

Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam (MTE)	Exam	Marks
(IA)		(ETE)	
50	-	50	100

Suggested Reading

- 1. Depending upon their area of interest, students may choose any text book of relevant field or any article from Journal.
- 2. Depending upon their area of interest, students may choose any reference book of relevant field.

Name of The Course	Project (Phase II)				
Course Code	MSTR8001				
Prerequisite	MSTR7004				
Co-requisite	-				
Anti-requisite	-				
		L	T	P	C
		0	0	0	15

Course Objectives

- 1. To develop the capacity of students in correlating theoretical knowledge into practical systems either to perform creative works or to perform analysis and hence to suggest solutions to problems, pertaining to civil engineering domain.
- 2. Foster collaborative learning skills.
- 3. Develop self-directed inquiry and life-long skills.
- 4. To enhance the communication skills of the students by providing opportunities to discuss in groups and to present their observations, findings and report in formal reviews both in oral and written format.

Course Outcomes

On completion of this course, the students will be able to

CO1	Submit a project synopsis comprising of the application and feasibility of the project.
CO2	Design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health care, safety and sustainability.
CO3	Work and communicate efficiently in multidisciplinary teams.
CO4 Identify, formulate, and solve engineering problems.	
CO5 Develop an understanding of professional and ethic responsibility.	

Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam (MTE)	Exam	Marks
(IA)		(ETE)	
50	-	50	100

- 1. Depending upon their area of interest, students may choose any text book of relevant field or any article from Journal
- 2. Depending upon their area of interest, students may choose any reference book of relevant field Depending upon their area of interest, students may choose any reference book of relevant field.

Name of The Course	Advanced Foundation Engineering				
Course Code	MSTR6010				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	T	P	C
		3	0	0	3

1. This subject is taught to impart the knowledge in the area of analysis and design of foundations and earth retaining structures.

Course Outcomes

On completion of this course, the students will be able to

CO1	Understand the concepts of shallow foundations.
CO2	Design the retaining walls and sheet piles.
CO3	Know the concept of pile group
CO4	Design pile foundation
CO5	Know the types well foundations.
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam (MTE)	Exam	Marks
(IA)		(ETE)	
20	30	50	100

Course Content:

Unit I: Shallow foundation

8 Lecture Hours

Shallow Foundations – Spread footings – Contact pressure – Structural design of individual footings – Pedestals – Combined footings (Rectangular and trapezoidal) – Eccentrically loaded footings – Mat foundations

Unit II: Deep foundation

8 Lecture Hours

Pile Foundations – Types of piles – Static and dynamic pile formula – Pile groups – Efficiency of pile group

Unit III: Pile foundations

8 Lecture Hours

Settlement of piles – Batter piles – Analysis of pile groups – Structural design of piles and pile caps

Unit IV: Retaining structures

8 Lecture Hours

Retaining Structures – Stability of walls – Design of cantilever and counter fort walls – Design of gravity walls – Coffer dams – Braced coffer dams – Stability of bottom excavation – Anchorage – Walls and tie rods

Unit V: Well foundations

8 Lecture Hours

Well Foundations – Types of wells or caissons – Components – Shapes of wells – Forces acting – Construction– Design of drilled caissons

Unit VI: Discussion on Latest Research Paper

2 Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

- 1. Gopal Ranjan and A S R Rao (2000), Basic and Applied Soil Mechanics, Second Edition, New Age International, ISBN-13: 9788122412239.
- 2. J. E. Bowles, (2000), Foundation Analysis and Design, Fifth Edition, McGraw Hill Education India Pvt. Ltd., ISBN-13: 9781259061035.
- 3. P. C. Verghese, (2009), Design of Reinforced Concrete Foundations, First Edition, PHI Learning Pvt. Ltd., ISBN-13: 9788120336155.

Name of The	Design of Concrete Bridges				
Course					
Course Code	MSTR6011				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	T	P	C
		3	0	0	3

Course Objectives

1. To understand the design and codal concepts of different types of bridges.

Course Outcomes

On completion of this course, the students will be able to

CO	Understand IRC Code.	
CO	Use Pigeauds curves for designing deck slab for T-beam	
(0)	Bridge	
CO	Understand Courbon's method of load distribution to	
CO.	analyze and design girders for T-beam Bridge.	
CO	CO4 Design plate girders and steel truss bridges.	
CO	Design piers and abutments	
CO	Discuss on Latest Research Paper.	

Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam (MTE)	Exam	Marks
(IA) 20	30	(ETE) 50	100

Course Content:

Unit I: Introduction and design of slab culvert

8 Lecture Hours

Site selection, various types of bridges, loads on bridges according to IRC codes, Design of RC bridges under concentrated loads using effective width method

Unit II: Deck slab of T-Beam Bridges

8 Lecture Hours

Pigeauds curves, Calculation of bending moments, Design of deck slab for T-beam Bridge for different types of vehicles

Unit III: Girders of T-Beam Bridge

8 Lecture Hours

Courbon's method of load distribution, Analysis and design of girders for T-beam Bridge for different types of vehicles, Concept of box culverts.

Unit IV: Design of Plate Girders and Steel Trussed Bridges 8 Lecture Hours

Design principles, Design and detailing of plate girder bridges, Types of trusses, Design of steel trussed bridges.

Unit V: Design of Substructures

8 Lecture Hours

Types of piers, Forces acting on piers, Design of piers, General features of abutments, Forces acting on abutments, Design of abutments.

Unit VI: Discussion on Latest Research Paper

2 Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

- 1. Victor D. J. (2008), Essentials of Bridge Engineering, 6th Edition, Oxford University Press, ISBN: 9788120417175.
- 2. Ramachandra (2004), Design of Steel structures, 4th Edition, Standard Publishers Distributors, ISBN: 9780071544115.
- 3. Duggal S. K. (2008), Design of Steel Structures, 3rd Edition, Tata McGraw-Hill, ISBN: 9780070260689.
- 4. IRC Bridge Code.

Name of The Course	Design of Industrial Structures				
Course Code	MSTR6012				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	T	P	C
		3	0	0	3

Course Objectives

1. This subject is taught to impart a broad knowledge in the area of industrial structures.

Course Outcomes

On completion of this course, the students will be able to

001	77 1	
CO1	Know the requirements of various industries.	
CO2	Get an idea about the materials used and planning.	
CO3	Know the construction techniques.	
CO4	Learn about circulation, communication and transport.	
CO5	Understand the functional requirements.	
CO6	Discuss on Latest Research Paper.	

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Industrial requirements

8 Lecture Hours

General - Specific requirements for industries like textile, sugar, cement, chemical, etc - Site layout and external facilities.

Unit II: Planning of building works

8 Lecture Hours

Planning of Building Work – Standards - Structural materials including plastics – Polymers - Fibre glass - Pressed card boards, etc - Multi-storey buildings - Steel skeletal structures - Reinforced concrete frames – Workshops - Ware houses - Single storey buildings - Sheds in steel and reinforced concrete - Northlights - Single span spherical and other special constructions - Cooling towers and chimneys - Bunkers and silos' prefabrication - Construction.

Unit III: Construction techniques

8 Lecture Hours

Construction Techniques - Expansion joints - Machine foundations - Other foundations - Water proofing - Roofs and roofing - Roof drainage - Floors and flooring joists - Curtain walling - Outer wall facing - Sound and shock proof mountings -

Use of modern hoisting and other construction equipments.

Unit IV: Circulation

8 Lecture Hours

Circulation - Communication and Transport - Fixed points (central cores) - Staircases - Grid floor sections - Lifts refuse disposals - Utilization of waste materials - Cranes - Continuous conveyors - Mobile cranes - Transporters - Doors - Sliding gates.

Unit V: Functional Requirements

8 Lecture Hours

Functional Requirements – Lighting: Natural lighting - Protection from the sun - sly lights - window cleaning installations -Services: Layout – wiring – fixtures - cable and pipe bridges - electrical installations - lighting substation - Effluent. Ventilation and fire protection: Ventilation - Airconditioning - Fire escapes and chutes - Fire alarms - Extinguishers and hydrants.

Unit VI: Discussion on Latest Research Paper

2 Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

- 1. El Reedy, (2010), Construction Management and Design of Industrial Concrete and Steel Structures, Taylor & Francis Group, ISBN-13:9781439815991.
- 2. Nelson G. L., (1988), Light Agricultural and Industrial Structures: Analysis and Design Kluwer Academic Publisher, ISBN-13: 9780442267773.
- 3. Dr. Raja Rizwan Hussain, (2011), Pre-Cast Concrete for Multi-Storey Structures, Createspace Publisher, ISBN: 781467918220.

Name of The	Earthquake Resistant Design				
Course					
Course Code	MSTR6013				
Prerequisite	MSTR5001				
Co-requisite	-				
Anti-requisite	-				
		L	T	P	C
		3	0	0	3

Course Objectives

- 1. To impart the knowledge about the earthquake and its occurrence.
- 2. To know about the mathematical modeling of structures subjected to earthquakes and their behaviour

Course Outcomes

On completion of this course, the students will be able to

CO1	Understand about the basic of seismology.
CO2	Evaluate the behaviour of structures under dynamic
CO2	loadings.
CO3	Know methodology for earthquake resistant design for
COS	shear walls.
CO4	Design the buildings using capacity design method.
CO5	Design seismic resistant multi storied building.
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Mid Term Exam (MTE)	End Term Exam	Total Marks
2 (1/1/2)	(ETE)	112442125
30	50	100
	Exam (MTE)	Exam (MTE) Exam (ETE)

Course Content:

Unit I: Basic of seismology & Theory of vibrations

8 Lecture Hours

Brief Introduction: Elements of Seismology – Definitions of magnitude – Intensity – Epicentre – General features of tectonics of seismic regions – Seismographs

Free vibrations of single degree freedom systems – Computations of dynamic response to time dependent forces – Solution of problems.

Unit II: Dynamic analysis of building

8 Lecture Hours

Dynamic analysis of building – MDOF system – Eigen values and eigen vectors – Mode shape – Calculation of storey shear.

Unit III: Earthquake resistant design of shear wall

8 Lecture Hours

Determination of design lateral forces – Design of shear wall – Detailing of reinforcements as per IS: 13920.

Unit IV: Capacity design method

8 Lecture Hours

Capacity – Design Principles – Design criteria for strength – Stiffness and ductility – Earthquake Analysis – Concept of earthquake resistance design – Code provisions for design of RCC building – IS: 1893 and IS: 4326 – Energy absorption capacity - Behaviour and design of masonry buildings subjects to earthquake ground motion.

Unit V: Multi storey building analysis

8 Lecture Hours

Seismic analysis and design of a multi storied building – Seismic retrofitting strategies for RC and masonry buildings.

Unit VI: Discussion on Latest Research Paper

2 Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

- 1. Anil K. Chopra, (2011), Dynamics of Structures Theory and Applications to Earthquake Engineering, Second Edition, Ingram International Inc., ISBN-13: 9780132858038.
- 2. Pankaj Agarwal and Manish Shrikhande, (2007), Earthquake Resistant Design of Structures, First Edition, Prentice-Hall India Pvt Ltd, ISBN-13: 9788120328921.
- 3. Gupta B. L., (2010), Principles of Earthquake Resistant Design of Structures & Tsunami, Standard Publishers & Distributors, ISBN-13: 9788180141485.

Name of The	Design of Tall Buildings				
Course					
Course Code	MSTR6014				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	T	P	C
		3	0	0	3

Course Objectives

- 1. This course is intended to teach the concept of tall structures.
- 2. Various methods to analyze the tall structure will be explained in the classes.

Course Outcomes

On completion of this course, the students will be able to

CO1	Know the types of tall buildings.
CO2	Analyze the plane frame systems by different methods.
CO3	Design the shear wall systems
CO4	Know the details of in filled frame systems.
CO5	Perform the three dimensional analysis.
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam (MTE)	Exam	Marks
(IA)		(ETE)	
20	30	50	100

Course Content:

Unit I: Classification of buildings

8 Lecture Hours

Introduction - Classification of buildings according to NBC - Types of loads - wind load - Seismic load - Quasi static approach

Unit II: Plane frame systems

8 Lecture Hours

Plane Frame System - Calculation of wind load - Approximate method - Portal - Cantilever and factor methods - Kani's method - Substitute frame method for dead load and live loads

Unit III: Shear wall system

8 Lecture Hours

Shear Wall System - Rosman's analysis - Design aspect - RC frame and shear wall interaction - Equivalent frame method

Unit IV: In-filled frame system

8 Lecture Hours

In-filled Frame Systems - Importance - Methods of analysis - Equivalent truss and frame method - Force-displacement method - Effect of perforation in the in-filled frame.

Unit V: Three dimensional analysis

8 Lecture Hours

Three Dimensional Analysis - Basic principles - Centre of rotation of a rigid floor - Force displacement method

Unit VI: Discussion on Latest Research Paper

2 Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

- 1. Bryan Stafford Smith and Alex Coull, (2011), Tall Building Structures: Analysis and Design, Wiley India, ISBN-13: 9788126529896.
- 2. SarwarAlamRaz, (2002), Structural Design in Steel, Second Edition, New Age International, ISBN-13: 9788122432282.
- 3. Ghali. A., Neville. A. M and Brown T. G, (2009), Structural Analysis A unified classical and Matrix Approach, Sixth Edition, Span press, ISBN-13: 9780415774338

Name of The	Energy Efficient B	Energy Efficient Buildings			
Course					
Course Code	MSTR6015				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	T	P	C
		3	0	0	3

Course Objectives

- 1. This course aims to highlight importance of Energy-Efficient Buildings within the context of Energy issues in the 21st century.
- To familiarize students with the concept of Energy efficiency, Renewable sources of energy and their effective adaptation in green buildings
- 3. To give a full understanding of Building Form and Fabric, Infiltration, ventilation, Lighting, cooling and water conservation.
- 4. To highlight the importance of Environmental Management as well as Environmental impact Assessment methods in Energy efficient buildings.

Course Outcomes

On completion of this course, the students will be able to

CO1	Understand to make buildings energy efficient.			
CO2	Have a fuller grasp on Renewable Energy mechanisms such as Passive Solar heating and collection, Photovoltaic's, and Ground source heat pumps, and their adaption to green building concepts.			
CO3	Understand the concepts of Site and Climate, Building Form, Building Fabric, Infiltration and ventilation, Lighting, Heating, Cooling, Energy Management and water conservation.			
CO4	Have the necessary skills to undertake an Environmental Impact Assessment study for Energy Efficient Buildings. They shall be equipped with the associated cutting-edge management strategies too.			
CO5	Monitor energy consumption.			
CO6	Discuss on Latest Research Paper.			

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I:Green Buildings, Energy and Environment

8 Lecture Hours

Green Buildings within the Indian Context - Types of Energy -Energy Efficiency and Pollution - Better Buildings - Reducing energy consumption - Low energy design.

Unit II: Renewable Energy, Site and Climate

8 Lecture Hours

Renewable Energy sources that can be used in Green Buildings - Solar energy - Passive Solar Heating - Passive Solar collection - Wind and other renewable - A passive solar strategy -

Photovoltaics - Climate and Energy - Macro and Microclimate - Indian Examples.

Unit III: Building Form and Fabric

8 Lecture Hours

Building Form - Surface area and Fabric Heat Loss - utilizing natural energy - Internal Planning - Grouping of buildings - Building Fabrics - Windows and doors - Floors - Walls - Masonry - Ecological walling systems - Thermal Properties of Construction Material.

Unit IV: Infiltration, Ventilation, Lighting, Cooling and Water Conservation

8 Lecture Hours

Infiltration and ventilation - Natural ventilation in commercial buildings - passive cooling - modeling air flow and ventilation - Concepts of daylight factors and day lighting - daylight assessment - artificial lighting - New light sources - Cooling buildings - passive cooling - mechanical cooling - Water conservation- taps, toilets and urinals, novel systems - collection and utilization of rain water.

Unit V: Energy Awareness

8 Lecture Hours

Energy awareness - monitoring energy consumption - Building Environmental Assessment - environmental criteria - assessment methods - assessment tools (e.g. LEED) — Ecohomes - Sustainable architecture and urban design - principles of environmental architecture - Benefits of green buildings - Energy Conservation Building code — NBC.

Unit VI: Discussion on Latest Research Paper

2 Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

- 1. William T. Meyer, (2007), Energy Economics and Building Design, McGraw Hill, ISBN: 9780070417519.
- 2. Sim Van Der Ryn and Stuart Cowan, "Ecological Design", Annotated Edition, Island Press ISBN-13: 9781597261418.
- 3.Richard D. Rush, (1991), The Building System Integration Handbook., Butterworth Heinemann Ltd, ISBN-13: 9780750691987.

Name of The	Environmental Engineering				
Course	Structures				
Course Code	MSTR6016				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	T	P	C
		3	0	0	3

1. This subject is taught to impart the knowledge in the area of analysis and design of pipes and sewage structures.

Course Outcomes

On completion of this course, the students will be able to

CO1	Understand the concepts of pipe network and design.
CO2	Design the water tanks and concrete roofing systems.
CO3	Understand the economic analysis of tanks.
CO4	Design the special purpose structures.
CO5	Understand the concepts of filter walls and clarifiers.
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Pipe design

8 Lecture Hours

Design of Pipes - Structural design of concrete - Pre-stressed concrete steel and cast iron piping mains - Sewerage tanks design - Anchorage for pipe - Massive outfalls - Structural design and laying - Hydrodynamic considerations.

Unit II: Water tank design

8 Lecture Hours

Analysis and design of water tanks - Design of concrete roofing systems using cylindrical, spherical and conical shapes using membrane theory and design of various types of folded plates for roofing using concrete - IS Codes for the design of water retaining structures.

Unit III: Economic analysis

8 Lecture Hours

Design of circular, rectangular, spherical and Intze type of tanks using concrete - Design of pre-stressed concrete cylindrical tanks – Economic analysis.

Unit IV: Swimming pools

8 Lecture Hours

Design of Special Purpose Structures - Underground reservoirs and swimming pools - Intake towers - Structural design including foundation of water retaining structures such as settling tanks, clarifloculators, aeration tanks etc. - Effect of earth pressure and uplift considerations - Selection of materials of construction

Unit V: Mixing tank

8 Lecture Hours

Design of filter walls and clarifiers - Mixing tanks.

Unit VI: Discussion on Latest Research Paper

2 Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

- 1. P. Dayaratnam, (2011), Design of Reinforced Concrete Structures, Fourth Edition, Oxford & IBH Pubs Company, ISBN-13: 9788120414198.
- 2. M. L. Gambhir, (2009), Design of Reinforced Concrete Structures, First Edition, Phi Learning Pvt. Ltd., ISBN-13: 9788120331938.
- 3.Krishna Raju, (2004), Pre-stressed Concrete (Problems and Solutions), Second Edition, CBS Publishers & Distributors, ISBN-13: 9788123902174.

Name of The Course	Experimental Stress Analysis					
Course Code	MSTR6017	MSTR6017				
Prerequisite	-	-				
Co-requisite	-	-				
Anti-requisite	-	-				
		L	T	P	C	
		3	0	0	3	

Course Objectives

1. This subject is taught to impart knowledge about the instruments and its applications.

Course Outcomes

On completion of this course, the students will be able to

CO1	Know the working principle of strain gauges.
CO2	Perform the model analysis using different theorems.
CO3	Know the concepts of photo elasticity and its applications.
CO4	Understand the processes of scattered light photo elasticity.
CO5	Use the various Non-destructive testing methods.

CO6	Discuss on Latest Research Paper.
-----	-----------------------------------

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Strain gauges

8 Lecture Hours

Strain Gauges - Mechanical and optical strain gauges - Description and operation - Electrical resistance- Inductance and capacitance gauges - Detailed treatment on resistant gauges - Measurement of static and dynamic strains - Strain rosettes - Effect of transverse strains - Use of strain recorders and load cells.

Unit II: Model Analysis

8 Lecture Hours

Model Analysis - Structural similitude - Use of models - Structural and dimensional analysis - Buckingham Pi Theorem - Muller Breslau's principle for indirect model analysis - Use of Begg's and Eney's deformeters - Moment indicators - Design of models for direct and indirect analysis.

Unit III:Two dimensional photo elasticity

8 Lecture Hours

Two dimensional photo elasticity - Stress optic law - Introduction to polariscope - Plane and circular polariscope - Compensators and model materials - Material and model fringe value - Calibration of photo elastic materials - Isochromatic and isoclinic fringes - Time edge effects.

Unit IV: Three dimensional photo elasticity

8 Lecture Hours

Three dimensional photo elasticity - Introduction - Stress freezing techniques - Stress separation techniques - Scattered light photo elasticity - Reflection polariscope

Unit V: Non-destructive testing

8 Lecture Hours

Miscellaneous Methods - Brittle coating method - Birefringence techniques - Moire fringe method - Non-destructive testing - Ultrasonic pulse velocity technique - Rebound hammer method - X-ray method - Gamma-ray method.

Unit VI: Discussion on Latest Research Paper

2 Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

- 1. Jindal, (2012), Experimental Stress Analysis, Pearson India, ISBN-13: 9788131759103
- 2. J. Srinivas, (2012), Stress Analysis and Experimental Techniques: An Introduction, Alpha Science International Ltd, ISBN-13: 9781842657232.
- 3. Sadhu Singh, (2009), Experimental Stress Analysis, Khanna Publishers, ISBN-13: 9788174091826.

Name of The Course	Machine Foundations				
Course Code	MSTR6018				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	T	P	C
		3	0	0	3

Course Objectives

1. This subject is taught to impart the knowledge of dynamic behaviour of soils, effects of dynamic loads and the various design methods.

Course Outcomes

On completion of this course, the students will be able to

CO1	Know the basic principles of soil dynamics.
CO2	Understand the elastic properties of soil.
CO3	Learn the multi degree freedom system.
CO4	Know the mathematical models for dynamic analysis.
CO5	Understand the concepts of stiffness, damping, inertia, guide lines for design.
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Introduction

8 Lecture Hours

Introduction: Elements of soil dynamics – Basic definitions – Importance of dynamics analysis – general requirements of machine foundations – types of machine foundation

Unit II: Properties of soil

8 Lecture Hours

Elastic properties of soils – Elastic deformation of soils and elastic constants - co-efficient of elastic uniform compression of soils - co-efficient of elastic non-uniform compression of soil, co-efficient of elastic uniform shear of soil, effect of vibration on the dissipatice properties of soil, effect of vibration on the porosity and hydraulic properties of soils, elements of the theory of residual settlements of decrease the residual dynamic settlement of foundations.

Unit III: Design parameters

8 Lecture Hours

Theory of massive machine foundation – theory of single and multi degree freedom, system – Evaluation of Design parameters – vertical vibrations of foundations, rocking, vibration of foundations, vibration of pure shear, vibration of foundations accompanied by simultaneous rotations.

Unit IV: Block foundation

8 Lecture Hours

Analysis and Design of foundation - models of vibration of block foundation - method of analysis for block foundation, design procedure from block foundations - relevant code for design of foundation, foundations for impact load and cyclic load - design data - Barker's Empirical procedures, analog models for dynamic analysis of single pile. Dynamic bearing capacity, earth pressure, dynamic soil structure interaction

Unit V: Vibration isolation

8 Lecture Hours

Vibration isolation – active and passive types of isolation – methods of isolation in machine foundation – properties of isolating materials – guide lines for design and construction details of machine foundation

Unit VI: Discussion on Latest Research Paper

2 Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

- 1. K. G. Bhatia, (2007), Foundations for Industrial Machines: Handbook for Practicing Engineers, D-Cad Publishers, ISBN-13: 9788190603201.
- 2. Srinivasulu P. and Vaidyanathan C. V., (2004), Hand Book of Machine Foundations, First Edition, Tata Education Pvt. Ltd., ISBN-13: 9780070966116.
- 3. Shambhu P. Dasgupta&Indrajit Chowdhury, (2009), Dynamics of Structures and Foundations: A Unified Approach: Fundamentals (Volume 1), First Edition, Taylor & Francis Publishers, ISBN-13: 9780415471459.

Name of The Course	Maintenance & Rehabilitation of Structures				
Course Code	MSTR6019				
Prerequisite	MSTR5003				
Co-requisite	-				
Anti-requisite	-				
		L	T	P	C
3 0 0		3			

Course Objectives

1. This subject imparts a broad knowledge in the area of repair and rehabilitation of structures.

Course Outcomes

On completion of this course, the students will be able to

Understand the properties of fresh and hardened
concrete.
Know the strategies of maintenance and repairing.
Get an idea of repairing techniques.
Understand the properties of repairing materials.
Know about weathering wear, fire leakage and marine
exposure.
Discuss on Latest Research Paper.
E E

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Properties of concrete

8 Lecture Hours

Serviceability and Durability of Structures - Quality Assurance for concrete construction - Fresh concrete properties - Strength - Permeability - Cracking - Effects due to climate - Temperature - chemicals - Wear and erosion - Design and construction errors - Corrosion mechanism - Effects of cover thickness and cracking - Methods of corrosion protection - Inhibitors - Resistant steels - Coatings - Cathodic protection

Unit II: Repairing materials

8 Lecture Hours

 $\begin{array}{c} Diagnosis \ and \ Assessment \ of \ Distress - Visual \ inspection - Non \\ destructive \ tests - Ultrasonic \ pulse \ velocity \ method - Rebound \\ hammer \ technique - ASTM \ classifications - Pullout \ tests - Core \\ test \end{array}$

Unit III: Repairing techniques

8 Lecture Hours

Materials for Repairing - Special concretes and mortar - Concrete chemicals - Special elements for accelerated strength gain - Expansive cement - Polymer concrete - Ferro cement, Fibre reinforced concrete - Fibre reinforced plastics.

Unit IV: Repairs to structures

8 Lecture Hours

Techniques for Repair - Rust eliminators and polymers coatings for rebars during repair - Foamed concrete - Mortar and dry pack - Vacuum concrete - GModulee and shotcrete - Epoxy injection - Mortar repair for cracks - Shoring and underpinning.

Unit V: Example of Repairs to Structures

8 Lecture Hours

Example of Repairs to Structures - Repairs to overcome low member strength - Deflection - Cracking - Chemical disruption - Weathering wear - Fire leakage - Marine exposure

Unit VI: Discussion on Latest Research Paper

2 Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

- 1. Shetty M. S., (2008), Concrete Technology, Seventh Edition,
- S. Chand & Company Ltd.ISBN-13: 9788121900034.
- 2. Ravindra K. Dhir, M. Roderick Jones & Li Zheng, (2005), Repair and Renovation of Concrete Structures, American Society of Civil Engineers, ISBN-13: 9780727734051.
- 3. A. R. Santha Kumar, (2006), Concrete Technology, First Edition, Oxford University Press, ISBN-13: 9780195671537.

Name of The Course	Theory and Design of Plates & Shells		
Course Code	MSTR6020		
Prerequisite	-		
Co-requisite	-		
Anti-requisite	-		
	L T P C		
	3 0 0 3		

Course Objectives

1. This subject is taught to impart knowledge about the behavior of plates and shells.

Course Outcomes

On completion of this course, the students will be able to

CO1	Understand the concept of thin plates
CO2	Analyze laterally loaded circular plates.
CO3	Analyze laterally loaded thin plates.

CO4	Understand the concept of shells.
CO5	Analyze and design of doubly curved shells
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Thin plates

8 Lecture Hours

Introduction:- Assumptions in the theory of thin plates – Pure bending of Plates –Relations between bending moments and curvature - Particular cases of pure bending of rectangular plates, Cylindrical bending - immovable simply supported edges – Synclastic bending and Anticlastic bending – Limitations - Boundary conditions.

Unit II: Circular plates

8 Lecture Hours

Laterally Loaded Circular Plates:- Differential equation of equilibrium – Uniformly loaded circular plates with simply supported and fixed boundary conditions – Annular plate with uniform moment and shear force along the boundaries.

Unit III: Plate bending

8 Lecture Hours

Laterally loaded thin plates – Differential equation of plates - Navier's solution and Levy's method – Rectangular plates with various edge conditions

Unit IV: Theory of shells

8 Lecture Hours

Types of shells – Structural action – Membrane theory – Limitations – Beam method of analysis.

Unit V: Curved shell

8 Lecture Hours

Analysis and design of doubly curved shells – Elliptic paraboloid - Conoid and hyperbolic paraboloid roofs.

Unit VI: Discussion on Latest Research Paper

2 Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

1. G. S. Ramaswamy, (1996), Design and Construction of Concrete Shell Roofs, First Edition, CBS Publishers and distributors. ISBN-13: 9780812390995.

- 2. Timoshenko and Krieger, (2010), Theory of Plates and Shells, Second Edition, Tata McGraw Hill Education Pvt. Ltd., ISBN-13: 9780070701250.
- 3. K. Bhaskar, (2013), Plates: Theories and Applications, First Edition, Ane Books Pvt. Ltd., ISBN-13: 9789382127024.

Name of The Course	Offshore Structures
Course Code	MSTR6021
Prerequisite	-
Co-requisite	-
Anti-requisite	-
	L T P C
	3 0 0 3

1. This subject is taught to impart knowledge about analysis and design of offshore structures.

Course Outcomes

On completion of this course, the students will be able to

CO1	Understand the effect of wind on structures.
CO2	Know about wave generation and propagation.
CO3	Calculate wave forces.
CO4	Design plat forms, derrick, jacket towers.
CO5	Learn the principles of jacketing towers.
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Rigid and flexible structures

8 Lecture Hours

Wind on structures - Rigid structures - Flexible structures - Static and Dynamic effects.

Unit II: Wave generation

8 Lecture Hours

Wave generation and Propagation - Small and finite amplitude wave theories - Wave energy and pressure distribution.

Unit III: Wave forces

8 Lecture Hours

Wave forces on structures - Environmental loading - Use of Morrison equation.

Unit IV: Types of structures

8 Lecture Hours

Loads - Design of platforms - Derricks - Helipads - Design.

Unit V: Design of platform, helipad etc

8 Lecture Hours

Principles and examples of Jacket towers - Mooring cables.

Unit VI: Discussion on Latest Research Paper

2 Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

- 1. Gerwick, (1999), Construction of Marine and Offshore Structure, Second Edition, CRC Press, ISBN-13: 9780849374852.
- 2. Lymon C. Reese, Bruce J. Muga& James F. Wilson, Offshore Structures, Second Edition, John Wiley & Sons, ISBN-13: 978047121264675.
- 3. Templetion J. S., (2007), Offshore Technology in Civil Engineering, Hall of Fame, Papers from the Early Years, Volume-2, American Society of Civil Engineers, ISBN-13: 9780784409251.

Name of The	Prefabricated Structures				
Course Code	MSTR6022				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	T	P	C
		3	0	0	3

Course Objectives

1. This subject is taught to impart the knowledge in the area of prefabricated structures.

Course Outcomes

On completion of this course, the students will be able to

CO1	Know the types of prefabrication systems.
CO2	Understand about handling and erection stresses.
CO3	Learn about construction and expansion joints
CO4	Understand the process of erection of R.C. structures.
CO5	Design pre fabricated modules.
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Introduction

8 Lecture Hours

Types of foundation - Modular co-ordination - Components - Prefabrication systems and structural schemes - Design considerations - Economy of prefabrication - Prefabrication of load-carrying members - DisModuleing of structures - Structural behaviour of pre cast structures.

Unit II: Handling and erection stresses

8 Lecture Hours

Handling and erection stresses - Application of pre stressing of roof members - Floor systems - Two way load bearing slabs - Wall panels

Unit III: Dimensioning and detailing of joints

8 Lecture Hours

Dimensioning and detailing of joints for different structural connections - Construction and expansion joints.

Unit IV: Erection of structures

8 Lecture Hours

Production - Transportation and Erection - Organizing of production - Storing and erection equipment - Shuttering and mould design - Dimensional tolerances, Erection of R.C. structures, Total prefabricated buildings

Unit V: Design of pre fabricated Modules

8 Lecture Hours

Prefabricated Modules for Industrial structures - Multi-storied buildings and Water tanks - Application of pre stressed concrete in prefabrication

Unit VI: Discussion on Latest Research Paper

2 Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

- 1. Hass, A. M., (1995) Precast concrete Design and Applications, Applied Science Publishers, England.
- 2. Promyslov, V. (1998), Design and Erection of Reinforced concrete structures, MIR Publishers, Moscow.ISBN: 0719024323.
- 3. Levit, M., (2000), Precast concrete materials, Manufacture properties and usage, Applied Science Publishers, London. ISBN 0-203-79881-3

Name of The	Pre-stressed Concr	Pre-stressed Concrete Structures			
Course Code	MSTR6023				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	T	P	C
	·	3	0	0	3

Course Objectives

1. This subject is taught to give the concepts of pre-stress.

Course Outcomes

On completion of this course, the students will be able to

CO1	Know the concepts, methods and materials of prestressing systems.
CO2	Design the pre-stressed concrete members.
CO3	Calculate the deflections in pre-stressed concrete members.
CO4	Design anchorage zones and composite pre-stressed concrete members.
CO5 Know the concepts of pre-stressed concrete beams.	
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam (MTE)	Exam	Marks
(IA) 20	30	(ETE) 50	100

Course Content:

Unit I: Materials and losses in pre stress

8 Lecture Hours

Difference between reinforced and pre-stressed concrete – Principles of pre-stressing – Methods and systems of pre-stressing – Principles of pre-stressing – Classification of pre-stressed concrete structures – Materials – High strength concrete and High strength steel – Stress-strain diagram - Losses in pre-stress.

Unit II: Design of pre-stressed concrete beam

8 Lecture Hours

Design of prismatic pre-stressed concrete members for bending at service load.

Unit III: Deflections

8 Lecture Hours

Simple cable profiles – Calculation of deflections – Design of beams for shear and torsion at working and ultimate loads.

Unit IV: Anchorage design

8 Lecture Hours

Design of Anchorage zone by Guyon's method – Concept of Magnel's method – IS:1343 recommendations

Unit V: Composite prestressed concrete beams

8 Lecture Hours

Pre-stressed concrete beams – Design procedure – Calculation of stresses at important stages both for propped and unpropped constructions – Shrinkage stresses - Statically indeterminate structures – Concept of concordant cable and profile – Sketching of pressure lines for continuous beams.

Unit VI: Discussion on Latest Research Paper

2 Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

- 1. Krishna Raju.N, (2004), Pre stressed Concrete, Third Edition, Tata McGraw Hill Co
- 2. Rajagopal.N, (2005), Prestressed Concrete, Second Edition, Narosa Publishing House.ISBN 13,: 9788173195433
- 3.Dayarathnam P, (2004), Prestressed Concrete Structures, S.Chand Publishers.
- 4.Sinha.N.C and Roy.S.K, (2000), Fundamentals of Pre-stressed Concrete, S.Chand & Company

Name of The Course	Soil Structure In	teractio	n		
Course Code	MSTR6024				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
_		L	T	P	C
		3	0	0	3

Course Objectives

1. This subject is taught to impart knowledge on soil structure interaction analysis, its influences in the design parameters.

Course Outcomes

On completion of this course, the students will be able to

CO1	Understand the concept of different soil models.		
CO2	Calculate modulus of subgrade for different types of		
CO2	soil.		
CO3	Carry out soil structure interaction for shallow		
CO3	foundation.		
CO4 Do the elastic analysis of piles and pile groups.			
CO5 Know non-linear soil properties.			

CO6 Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Mathematical model, Winkler model, Two parameter model

8 Lecture Hours

Soil models: single parameter model (Winkler), two parameter models – Filonenko - Borodich model, Pasternak model, Heteni model, visco elastic model, elastic continuum model, contact pressure distribution below the flexible and rigid footing and. raft parameter affecting conduct pressure.

Unit II: Modulus of subgrade, reaction

8 Lecture Hours

Contact pressure and subgrade modulus and beams on elastic foundation method - analysis of contact pressure distribution — modulus of subgrade reaction — classical solution for beam of infinite length subjected to concentrated load and moment, beams of finite length (formulation of basic equation for slabs resting on elastic foundation), Application of design of combined footing.

Unit III: Beams and slabs

8 Lecture Hours

Plates in elastic medium – soil structure interaction for shallow foundation – interface behaviour - Thin and thick plates – analysis of finite plates, rectangular and circular plates, Numerical analysis of finite plates, simple solutions, Baker's method for rafts.

Unit IV: Analysis of piles

8 Lecture Hours

Soil pile interaction: Introduction — elastic analysis of single pile, theoretical solutions for settlement and load distribution analysis of pile group interaction analysis — Load distribution with groups with rigid cap — elastic continuum and elasto-plastic analysis of piles and pile groups (Ultimate lateral resistance of piles by various approaches).

Unit V: Pile displacement

8 Lecture Hours

Laterally loaded pile and piled raft: Non-linear load – deflection response P-Y reactions, non-linear soil properties lift capacity of piles and anchors, Piles raft system – soil structure interaction in framed structures. FEM modules use of approximately software packages

Unit VI: Discussion on Latest Research Paper

2 Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

- 1. Selvadurai A.P.S., Elastic Analysis-Soil foundation interaction.ISBN 13: 9780444416636
- 2. Hetenyi, M; Beams on elastic foundation. ISBN: 0472084453
- 3. Baker, A.L.L. Raft foundation, The Soil line method of design ISBN 10: 8122410782
- 4. Nainan P. Kurian, Design of foundation systems (Narosa) ISBN: 978-81-7319-939-4
- 5. Structure –Soil interaction State of art report, Institute of Structural Engineers, 1978
- 6. ACI-336 suggested Analysis and design practice, for combined footings and mats.

American Concrete Institute, Delhi - 1988.

7. Poulous, H.G. and Davis, E.H, Pile foundation analysis and design, John Wiley, 1980, ISBN 10: 0471020842

Name of The Course	Stability of Struc	tures			
Course Code	MSTR6025				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	T	P	C
_		3	0	0	3

Course Objectives

1. This subject is taught to impart the knowledge in the area of stability of structures.

Course Outcomes

On completion of this course, the students will be able to

CO1	Understand the behaviour of columns.	
CO2	Learn the theory of the beam columns.	
CO3	Analyse the frame stability.	
CO4	Analyse the frame stability.	
CO5	Understand the concept of buckling of shells.	
CO6	Discuss on Latest Research Paper.	

Continuous Assessment Pattern

Internal	Mid Term	End Term	Total
Assessment	Exam (MTE)	Exam	Marks
(IA)		(ETE)	

20	30	50	100

Course Content:

Unit I: Column analysis

8 Lecture Hours

Introduction - Static equilibrium - Governing equation for columns - Analysis for various boundary conditions - Analysis of Eccentrically loaded column.

Unit II: Beam column analysis

8 Lecture Hours

Beam Columns – Theory of Beam column – Stability analysis of beam column with different types of loads – Failure of beam columns.

Unit III: Frames stability

8 Lecture Hours

Analysis and stability of frames.

Unit IV: Plates

8 Lecture Hours

Plates subjected to in plane forces - Differential equation - Analysis - Approximate techniques - Analysis for various boundary conditions - Wood and Armer equation for analysis and design.

Unit V: Shells

8 Lecture Hours

Buckling of shells – Differential equation – Analysis – Application

Unit VI: Discussion on Latest Research Paper

2 Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

- 1. Aswini Kumar, (2002), Stability theory of structures, Tata McGraw Hill Publishing Co.Limited, New Delhi.
- 2. Timoshenko & Gere (2000), Theory of Elastic Stability, McGraw Hill. ISBN-13: 978-0-486-47207-2
- 3.N.G.R. Iyengar (1996), Structural Stability of Columns and Plates, Affiliated East West Press, ISBN 81-85814-24-4. 3.

Name of The	Structural Optimization				
Course					
Course Code	MSTR6026				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	T	P	C
		3	0	0	3

1. This course is intended to teach the importance of Optimization problems in the Structural Engineering.

Course Outcomes

On completion of this course, the students will be able to

	*
CO1	Understand the concepts of Optimization problems in
COI	the Structural Engineering.
CO2	Know the different methods for the Optimization
CO2	problems.
CO3	Understand the concepts of Linear and Non-Linear
003	Programming techniques.
COA	Understand the concepts of Stochastic Optimization
CO4	Methods.
COS	Understand the concepts of Genetic Algorithm based
CO5	Optimization Methods.
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Formulation of Structural Optimization problems 8 Lecture Hours

Formulation of Structural Optimization problems: Design variables - Objective function - constraints. Fully stressed design.

Unit II: Linear Programming techniques

8 Lecture Hours

Review of Linear Algebra: Vector spaces, basis and dimension, canonical forms.

Unit III: Non-Linear Programming techniques

8 Lecture Hours

Linear Programming: Revised Simplex method, Application to structural Optimization.

Unit IV: Stochastic Optimization Methods

8 Lecture Hours

Nonlinear Programming: Deterministic Methods_ Unconstrained and constrained Optimization - Kuhn-Tucker conditions, Direct search and gradient methods - One dimensional search methods - DFP and BFGS algorithms, constrained Optimization - Direct and Indirect methods - SLP, SQP and SUMT, Application of NLP methods to optimal structural design problems. Optimality criteria based methods, Reanalysis techniques - Approximation concepts - Design sensitivity Optimization of sections, steel and concrete structures - framed structures, bridge structures.

Unit V: Genetic Algorithm based Optimization Methods 8 Lecture Hours

Genetic Algorithm based Optimization Methods

Unit VI: Discussion on Latest Research Paper

2 Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

Suggested Reading

- 1. S.S.Rao, (1996), Engineering Optimization: Theory and Practice, Third Edition, John Wiley &Sons,Inc.ISBN 0-471-55034-5
- 2. Smith, D. R., "Variational Methods in Optimization," Dover Publications, 1998. ISBN, 0486404552,
- 3. Haftka, R. T. and Gurdal, Z., "Elements of Structural Optimization," Kluwer Academic Publishers, 1992. ISBN, 0792315049
- 4. Bendsoe, M. P. and Sigmund, O., "Topology Optimization: Theory, Methods, and Applications," Springer, 2003. ISBN-10: 3540429921

Name of The Course	Composite Structures				
Course Code	MSTR6027				
Prerequisite	-				
Co-requisite	-				
Anti-requisite	-				
		L	T	P	C
		3	0	0	3

Course Objectives

- 1. To know the types of composites
- 2. To understand the need for stress strain relation
- 3. To understand the fabrication methods
- 4. To understand the laminated plates
- 5. To study and understand the different methods & analysis of composite materials.

Course Outcomes

On completion of this course, the students will be able to

CO1	Analyze composite structures
CO2	Do microscopic and macroscopic analysis
CO3	Analyze sandwich and laminated plates
CO4	Understand the failure criteria for composites.
CO5	Know the fabrication techniques
CO6	Discuss on Latest Research Paper.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Stress Strain Relationship

8 Lecture Hours

Introduction - advantages and application of composite materials, reinforcements and matrices - Generalised Hooke's Law - Elastic constants for anisotropic, orthotropic and isotropic materials.

Unit II: Finite Element Analysis of Plates

8 Lecture Hours

 $\label{lem:concept} Introduction - concept of mesh - Displacement function - Stress-Strain Matrix - Stiffness matrix of plate element - Solution of problem$

Unit III: Methods of Analysis

8 Lecture Hours

Micro mechanics - Mechanics of materials approach, elasticity approach to determine material properties - Macro Mechanics - Stress-strain relations with respect to natural axis, arbitrary axis - Determination of material properties - Experimental characterization of lamina.

Unit IV: Laminated Plates

8 Lecture Hours

Governing differential equation for a general laminate, angle ply and cross ply laminates - Failure criteria for composites.

Unit V: Sandwich Constructions, Fabrication Process

8 Lecture Hours

Basic design concepts of sandwich construction - Materials used for sandwich construction - Failure modes of sandwich panels - Various Open and closed mould processes - Manufacture of fibers - Types of resins and properties and applications - Netting analysis.

Unit VI: Discussion on Latest Research Paper

2 Lecture Hours

This unit is based on research papers / Innovations / start-up ideas / white papers / applications. Minimum one latest research paper will be discussed in the class.

- 1. Calcote, L R. "The Analysis of laminated Composite Structures", Von Noastrand Reinhold Company, New York 1991.ISBN0-324-06680-5
- 2. Jones, R.M., "Mechanics of Composite Materials", McGraw-Hill, Kogakusha Ltd., Tokyo, 1915.ISBN 81-297-0277-0

- 3. Agarwal, B.D., and Broutman, L.J., "Analysis and Performance of Fibre Composites", John Wiley and sons. Inc., New York. ISBN 0-324-06680-5
- 4. Lubin, G., "Handbook on Advanced Plastics and Fibre Glass", Von Nostrand Reinhold Co., New York.ISBN 0-324-06680-5
- 5. J. N. Reddy, "Mechanics of Laminated Composite Plates and Shells Theory and Analysis", CRC Press USA), ISBN 9780849315923.