

Curriculum and Syllabus 2020-2021

COURSE BOOK - 2020 Volume-xx School of Computing Science and Engineering Program : Integrated B.C.A.+ M.C.A

Vision

To be known globally as a premier department of Computer Science and Engineering for value-based education, multidisciplinary research and innovation.

Mission

MD1: Create a strong foundation in fundamentals of Computing Science and Engineering through Outcome based Teaching.

MD2: Establish state-of-the art facilities for Analysis, Design and Implementation to solve real world problems.

MD3: Conduct trans-disciplinary research for developing innovative solutions.

MD4: Involve the aspirants in group activities including professional bodies to develop leadership and communication skills.

Program Educational Objectives

PEO1: Graduates of Computer Science and Engineering will be globally competent and provide sustainable solutions for interdisciplinary problems as team players.

PEO2: Graduates of Computer Science and Engineering will engage in professional activities with ethical practices in the field of Computer Science and Engineering to enhance their own stature to contribute towards society.

PEO3: Graduates of Computer Science and Engineering will acquire specialized knowledge in emerging technologies for research, innovation and product development.

Program Specific Objectives

PSO1: Students are trained to perform tasks related to conversion of mechanical system to automatic system, integrating mechanical system to IoT and cloud based technologies.

PSO2: Students are practiced to use augmented reality / virtual reality along with different CAE tools for rapid prototyping and additive manufacturing.

Program Outcomes

- 1. **Engineering Knowledge**: Apply the knowledge of Mathematics, Science, and Engineering fundamentals, and an engineering specialization to solution of complex engineering problems.
- 2. **Problem analysis**: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
- 3. **Design/development of solutions**: Design of solutions for complex engineering problems and design of system components or processes that meet the specified needs with appropriate considerations of public health and safety, and cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems**: Use research based methods including design of experiments, analysis and interpretation of data and synthesis of information leading to logical conclusions.
- 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling complex engineering activities with an understanding of limitations.
- 6. **The engineer and society: Apply** reasoning within the contextual knowledge to access societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in the societal and environmental contexts, and demonstrate the knowledge of, and the need for sustainable developments.
- 8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.
- 9. **Individual and team work :**Function effectively as an individual independently and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large such give and receive clear instructions.
- 11. **Project management and finance**: Demonstrate knowledge and understanding of engineering management principles and apply those to one's own work as a member and leader of a team to manage projects in multidisciplinary environments.
- 12. **Life-long Learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Curriculum

		Semeste	r 1							
Sl.	Course		 				Asses	sment Pa	ttern	
No	Code	Name of the Course	L	Т	P	С	IA	MTE	ETE	Total
1	BCAC1101	Discrete Mathematics	3	0	0	3	20	30	50	100
2	BCAC1102	Fundamentals of Digital Computers	3	0	0	3	20	30	50	100
3	BCAC1103	Introduction to Information Technology	3	0	0	3	20	30	50	100
4	BCAC1104	Programming Essentials in C	3	0	0	3	20	30	50	100
5	BCAC1105	Information Technology Lab	0	0	2	1	70		30	100
6	BCAC1106	Programming Essentials in C Lab	0	0	2	1	70		30	100
7	SLBC1001	Basic English	0	0	4	2	50		50	100
		Total	12	0	8	16				
Sl.	Course	Semester	r II				A ggog	sment Pa	440	
No	Code	Name of the Course	L	Т	P	С	IA	MTE	ETE	Total
1	ENVS1001	Environmental Science	3	0	0	3	20	30	50	100
2	SLBC1002	Professional Communication	0	0	4	2	50	-	50	100
3	BCAC1211	Data Structures using C	3	0	0	3	20	30	50	100
4	BCAC1203	Web Technology	3	0	0	3	20	30	50	100
5	BCAC1204	Enterprise Resource Planning	3	0	0	3	20	30	50	100
6	BCAC1205	Numerical Methods	3	0	0	3	20	30	50	100
7	BCAC1202	Python Programming	3	0	0	3	20	30	50	100
8	BCA9004	Disruptive Technologies	2	0	0	2	20	30	50	100
9	BCAC1201	Data Structures using C Lab	0	0	2	1	70	30	30	100
10	BCAC1213	Web Technology Lab	0	0	2	1	70		30	100
11	BCAC1212	Python Programming Lab	0	0	2	1	70		30	100
		Total	20	0	10	25				
		Semester	· III							
Sl	Course	Name of the Course					Assess	sment Pa	ttern	
No	Code	Name of the Course	L	T	P	C	IA	MTE	ETE	Total
1	BCAC2101	Computer Architecture	3	0	0	3	20	30	50	100
2	BCAC2102	Database Management System	3	0	0	3	20	30	50	100
3	BCAC2103	Java Programming	3	0	0	3	20	30	50	100
4	BCAC2104	Introduction to Algorithm Analysis and Design	3	0	0	3	20	30	50	100
5	BCAC2105	Cryptographic Fundamentals	3	0	0	3	20	30	50	100
6	BCAC2106	Computer Networking	3	0	0	3	20	30	50	100
7	BCAC2107	Database Management System Lab	0	0	2	1	70		30	100
8	BCAC2108	Java Programming Lab	0	0	2	1	70		30	100
9	BCAC2109	Computer Networking Lab	0	0	2	1	70		30	100
10	LLL231	Professional Communication and Aptitude	0	0	4	2	50		50	100
		Total	18	0	10	23				

		Semeste	r IV								
Sl	Course						Assessment Pattern				
No	Code	Name of the Course	L	Т	P	С	IA	MTE	ETE	Total	
1	LLL245	Campus-to-Corporate	0	0	4	2	50	-	50	100	
2	BCAS2015	Operating System	3	0	0	3	20	30	50	100	
3	BCAS2016	Software Engineering	3	0	0	3	20	30	50	100	
4	BCAS2025	.Net Technology	3	0	0	3	20	30	50	100	
5	BCAS2021	Linux Administration	3	0	0	3	20	30	50	100	
6	BCAS2013	Graph Theory	3	0	0	3	20	30	50	100	
7		Elective-I	3	0	0	3	20	30	50	100	
8	BCAS2026	.Net Technology Lab	0	0	2	1	70		30	100	
9	BCAS2022	Linux Administration Lab	0	0	2	1	70		30	100	
10	BCA9003	iOS, Android App Development Lab	0	0	2	1	70		30	100	
11		Elective-I Lab	0 0 2 1						30	100	
		Total	18	0	12	24					
			•						•		
		Semeste	er V								
Sl	Course	Name of the Course					Assess	ssessment Pattern			
No	Code	Name of the Course			_	۲					
			L	T	P	C	IA		ETE	Total	
1	BCAS3001	Big Data Computing	3	0	P 0	3	20	30	50	100	
1 2		Computer Graphics						30			
2	BCAS3001 BCAS3003 BCAS3004		3 3 3	0	0	3 3	20 20 20		50 50 50	100 100 100	
2	BCAS3001 BCAS3003	Computer Graphics E-Commerce Software Project Management	3 3 3 3	0	0	3 3 3	20 20	30	50 50	100 100	
2	BCAS3001 BCAS3003 BCAS3004 BCAS3006 BCAS3010	Computer Graphics E-Commerce	3 3 3	0 0 0	0 0 0 0	3 3	20 20 20 20 20 20	30	50 50 50	100 100 100	
2 3 4	BCAS3001 BCAS3003 BCAS3004 BCAS3006 BCAS3010 BCAS3005	Computer Graphics E-Commerce Software Project Management Elective-II - Network Security Computer Graphics Lab	3 3 3 3	0 0 0 0	0 0 0 0	3 3 3	20 20 20 20 20 20 70	30 30 30	50 50 50 50	100 100 100 100	
2 3 4 5	BCAS3001 BCAS3003 BCAS3004 BCAS3006 BCAS3010 BCAS3015 BCAS3011	Computer Graphics E-Commerce Software Project Management Elective-II - Network Security Computer Graphics Lab Elective II lab - Network Security Lab	3 3 3 3 3 0 0	0 0 0 0	0 0 0 0 0 2 2	3 3 3 3	20 20 20 20 20 20 70	30 30 30	50 50 50 50 50	100 100 100 100 100 100 100	
2 3 4 5 6	BCAS3001 BCAS3003 BCAS3004 BCAS3006 BCAS3010 BCAS3005	Computer Graphics E-Commerce Software Project Management Elective-II - Network Security Computer Graphics Lab	3 3 3 3 3 0 0	0 0 0 0 0	0 0 0 0 0 2 2 8	3 3 3 3 1	20 20 20 20 20 20 70	30 30 30	50 50 50 50 50 30	100 100 100 100 100 100	
2 3 4 5 6 7	BCAS3001 BCAS3003 BCAS3004 BCAS3006 BCAS3010 BCAS3015 BCAS3011	Computer Graphics E-Commerce Software Project Management Elective-II - Network Security Computer Graphics Lab Elective II lab - Network Security Lab	3 3 3 3 3 0 0	0 0 0 0 0 0	0 0 0 0 0 2 2	3 3 3 3 1 1	20 20 20 20 20 20 70	30 30 30	50 50 50 50 50 50 30 30	100 100 100 100 100 100 100	
2 3 4 5 6 7	BCAS3001 BCAS3003 BCAS3004 BCAS3006 BCAS3010 BCAS3015 BCAS3011	Computer Graphics E-Commerce Software Project Management Elective-II - Network Security Computer Graphics Lab Elective II lab - Network Security Lab Project-I	3 3 3 3 3 0 0 0	0 0 0 0 0 0	0 0 0 0 0 2 2 8	3 3 3 3 1 1 4	20 20 20 20 20 20 70	30 30 30	50 50 50 50 50 50 30 30	100 100 100 100 100 100 100	
2 3 4 5 6 7	BCAS3001 BCAS3003 BCAS3004 BCAS3006 BCAS3010 BCAS3011 BCAS3011 BCAS9997	Computer Graphics E-Commerce Software Project Management Elective-II - Network Security Computer Graphics Lab Elective II lab - Network Security Lab Project-I Total Semeste	3 3 3 3 3 0 0 0 15	0 0 0 0 0 0 0	0 0 0 0 0 2 2 8 12	3 3 3 3 1 1 4 21	20 20 20 20 20 70 70 50	30 30 30 30 30	50 50 50 50 50 30 30 50	100 100 100 100 100 100 100	
2 3 4 5 6 7 8	BCAS3001 BCAS3003 BCAS3004 BCAS3006 BCAS3010 BCAS3011 BCAS9997 Course Code	Computer Graphics E-Commerce Software Project Management Elective-II - Network Security Computer Graphics Lab Elective II lab - Network Security Lab Project-I Total Semeste Name of the Course	3 3 3 3 3 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 2 2 2 8 12	3 3 3 3 1 1 4 21	20 20 20 20 20 70 70 50	30 30 30 30 30	50 50 50 50 50 30 30 50	100 100 100 100 100 100 100	
2 3 4 5 6 7 8	BCAS3001 BCAS3003 BCAS3004 BCAS3006 BCAS3010 BCAS3011 BCAS3011 BCAS9997	Computer Graphics E-Commerce Software Project Management Elective-II - Network Security Computer Graphics Lab Elective II lab - Network Security Lab Project-I Total Semeste	3 3 3 3 3 0 0 0 15	0 0 0 0 0 0 0	0 0 0 0 0 2 2 8 12	3 3 3 3 1 1 4 21	20 20 20 20 20 70 70 50	30 30 30 30 30	50 50 50 50 50 30 30 50	100 100 100 100 100 100 100	

List of Electives

Sl	Course	Name of the Electives		Assessment Pattern						
N	Code			Т	P	С	IA	MTE	ETE	Total
О	Code			_)	17.1	WIII	EID	Total
		Elective-I(Any one)								
1	BCAS2028	Advance DBMS	3	0	0	3	20	30	50	100
2	BCAS2029	Advance DBMS Lab	0	0	2	1	70		30	100
3	BCA9001	PE-1 - AI & ML	3	0	0	3	20	30	50	100
4	BCA9002	PE-1- AI & ML using Python Lab	0	0	2	1	70		30	100
		Elective -II (Any one)	L	T	P	C				
1	BCAS3008	Multimedia System	3	0	0	3	20	30	50	100
2	BCAS3009	Multimedia System Lab	0	0	2	1	70		30	100
3	BCAS3010	Network Security	3	0	0	3	20	30	50	100
4	BCAS3011	Network Security Lab	0	0	2	1	70		30	100
5	BCAS3012	Search Engine Optimisation	3	0	0	3	20	30	50	100
6	BCAS3013	Search Engine Optimisation Lab	0	0	2	1	70		30	100

Detailed Syllabus

8 hours

School of Computing Sciences and Engineering

Name of The	Discrete	L	T	P	C
Course	Mathematics				
Course Code	BCAC1101	3	0	0	3
Prerequisite					
Co requisite		IA	MTE	ETE	TOT
Ant requisite		20	30	50	100

Course Objectives:

This course provides elementary mathematical knowledge and problem solving techniques. This course studies the mathematical elements of computer science including propositional logic, predicate logic, combinatorics, mathematical induction, recurrence relation, graphs, and Boolean algebra. At the end of this course students should be able to understand the concepts and skills of basic operations in discrete mathematics.

Course Outcomes

CO1	Explain at high levels concepts and implement basic						
	operations in discrete mathematics.						
CO2	Perform combinatorial analysis to solve counting problems.						
CO3	Develop mathematical models from computation theory to						
	programming languages through combinatorics.						
CO4	Use mathematical reasoning to comprehend and construct						
	mathematical arguments, graphs.						
CO5	Develop techniques for counting, permutations and						
	combinations.						

Text Book (s)

- Seymour lipschutz, Marc Lars Lipson, Theory and Problems of Discrete Mathematics Third Edition, Schaum's Outline Series McGRAW-HILL.
- 2. B. Kolman, R.C. Busby, and S.C. Ross, Discrete Mathematical Structures, PHI
- 3. Kenneth H. Rosen, Discrete Mathematics and Its Applications, McGraw-Hill

Reference Book (s)

- 1. Swapan Kumar Sarkar, A Textbook of Discrete Mathematics, S.Chand Publication
- Jean Paul Trembley, R Manohar, Discrete Mathematical Structures with Application to Computer Science, McGraw-Hill
- J.L. Mott, A. Kandelad T.P. Baker, Discrete Mathematics for Computer Scientists and Mathematicians, PHI, 2nd Edition, 1999.
- Liu and Mohapatra, "Elements of Distcrete Mathematics", McGraw Hill

Unit-1	MATHEMATICAL LOGIC	6 hours					
Introduction, Propositions, Connectives, Truth tables,							
Tautologies	Tautologies and Contradictions, Equivalences implications,						
Normal forms, Methods of proof rules of inference for quantified							
propositions, Mathematical induction.							

Unit-2	COMBINATORICS	8 Hours				
Basics of counting, Combinations of permutations, Enumeration						
of combina	tion and permutation, Pigeonhole principl	e, Inclusion,				
Exclusion p	orinciple, Ordered and unordered portions.					
Unit-3	RECURRENCE RELATIONS	8 hours				
Generating	function of sequences, Calculating coeffic	cients of				
generating	functions, Recurrence relations, solving re	ecurrence				
relations by	substitution and generating functions, Me	ethod of				
characterist	ic roots, Solution of homogeneous recurre	ence				
relations						
Unit-4	GRAPH THEORY	8 hours				
Basic conce	epts of graph theory, Diagraph, Paths, Rea	chability				
connectedn	ess, Matrix representation of graphs, Subg	graphs,				
Isomorphis	ms trees, Properties, Directed tress, Binary	y trees.				
Unit-5	BOOLEAN ALGEBRA	6 hours				
Post, Hasse diagrams, Lattices, Types of Lattices, Boolean						
Algebra, Basic theorems, Applications.						
Unit-6	Advancement & Research	4 hours				
Advancement in the course, Research methodologies, research						
discussion & publication						

COMBINATORICS

Name of The Course	Fundamentals of Digital Computers	L	Т	P	C
Course Code	BCAC1102	3	0	0	3
Prerequisite					
Co requisite		IA	MTE	ETE	TOT
Ant requisite		20	30	50	100

Course Objectives:

Unit-2

The purpose of this course is to provide digital computer fundamentals. The main goal of the course is to introduce students to the number system conversion from one base to another, to solve equations using Karnaugh map and Tabulation method, design circuits for binary adder, code converter, multiplexer, arithmetic circuits and accumulator.

Course Outcomes

CO1	Develop an understanding of the number system
CO2	Design the logic gates And solve K-maps Problems.
CO3	Understand the logics of Adder, Multiplexer and encoder-decoder.
CO4	Understand the Flip-flops and application of flip-flops
CO5	Understand Registers and Memory classification.

Text Book (s)

M. Morris Mano – Digital Logic and Computer Design, 3rd Ed, PHI – 1994. Reference Book (s)

A.P. Malvino and D.P. Leach – Digital Principles and Applications – Fourth Edition – Tata McGraw Hill Edition – 1999.

Unit-1	Introduction 8 hours						
Introduction – Converting Numbers from One Base to Another –							
Complement	s – Binary Codes – Integrated Circuits	Boolean					
Algebra – Pr	operties of Boolean Algebra - Boolean	Functions –					
Canonical and Standard Forms							
Unit-2	Logic Gates	8 hours					

Unit-3	Adder – Subtractor	8 hours					
Condition –	Condition – Sum of Products and Products of Sum Simplification						
Logic Gates – Karnaugh Map Up to 3 Variables – Don't Care							

Adder – Subtractor – Code Converter – Multilevel NAND and NOR Circuits – Binary Parallel Adder – Decimal Adder – Binary Multiplier-Binary Divider-Decoders – Encoder – Multiplexers-Demultiplexer.

Unit	t-4	Flip Flops					8 hours
П.	ī			c Ti:	į	ъ.	6.6

Flip Flops – Triggering of Flip Flops – Design of Counters – Ripple Counters.

Unit-5	Registers	3			8 h	ours
Registers	- Shift	Registers	-Memory	D	evice	es –
Introduction	,Classificati	ion Of	Memories,	Ba	sic	Memory
Structure ,R.	AM,ROM,F	PLA.				

Unit-6	Advancement & Research		4 hours			
Advancemen	t in	digital	computers,	research	discussion	&
publication						

Name of	Introduction to	L	T	P	C
The Course	Information				
	Technology				
Course	BCAC1103	3	0	0	3
Code					
Prerequisite					
Co requisite		IA	MTE	ETE	TOT
Ant		20	30	50	100
requisite		20	30	30	100

Course Objectives:

- 1. Provide information about the various computer tools available.
- 2. Enable the students to understand the role of information technology in various fields.

Course Outcomes

CO1	Understand the basics of Information System and GPS
CO2	Understand about Computer System, CPU,
	Microprocessor and I/O.

CO3	Learn about the I/O Devices and storage Media.		
CO4	Understand about the Software, word processing,		
	spreadsheets and database Application.		
CO5	Understand the Network Application, Tools of		
	multimedia.		
CO6	Understand the concept of Multimedia.		

Text Book (s)

 D.P. Curtin, K. Foley, K. Sen and C. Morin, Information Technology – The Breaking Wave, TMH Edition – 1999.

Reference Book (s)

- 1. Sawyer, Williams and Hutchinson, Using Information Technology Brief Version, McGraw Hill International Edition 2003.
- Fundamentals of Information Technology, Alexis Leon
 Mathews Leon–Vikas Publishing House Pvt. Ltd. –
 1999.

Unit-1 Introduction 6 hours IT an Introduction – Information Systems – Software and Data – IT in Business, Industry, Home, at Play, Education, Training, Entertainment, Arts, Science, Engineering and Maths – Computers in Hiding – Global Positioning System (GPS).

Unit-2	Technolog	gy		8 hours
Types of Computers – Anatomy of a Computer – Foundations of				
Modern Info	Modern Information Technology - The Central Processing Unit			
- How Micro	oprocessors a	and Memory	Chips are Ma	ade – Memory
- Buses fe	or Input a	and Output	- Commun	ication With
Peripherals.				

Unit-3	Devices	8 hours			
I/O Devices – Inputting Text and Graphics – State of the Art –					
Input and Ou	utput - Pointing Devices - Foundatio	ns of Modern			
Output – Dis	splay Screens - Printers - Foundatio	ns of Modern			
Storage - St	orage Media - Increasing Data Stora	ge Capacity -			
Backing up y	our Data – The Smart Card.				

Unit-4	Interfaces		8 hours		
Software - User Interfaces - Application Programs - Operating					
Systems – D	Oocument – Centric Con	mputing - M	ajor Software		
Issues – Net	work Computing - Wor	rd Processing	and Desktop		
Publishing –	Spreadsheet and Databas	e Application	ıs.		

Unit-5	Networks	8 hours
Network Ap	plications - Foundation of Modem	Networks -
Local Area Networks - Wide Area Networks - Links Between		
Networks -	Networks: Dial-up Access - Hig	h Bandwidth
Personal Cor	nections	

Unit-6	Multimedia	4 hours		
Multimedia -	- Tools of Multimedia - Delivering	Multimedia –		
Multimedia on Web				

Name of	Programming	L	Т	P	С
The Course	Essentials in C				
Course	BCAC1104	3	0	0	3
Code	DCACIIU4				
Prerequisite					
Co requisite		IA	MTE	ETE	TOT
Ant		20	30	50	100
requisite		20	30	30	100

Course Objectives:

- 1. Introduce the students to the concepts of C programming with emphasis on the following topics Functions, Arrays, Pointers, Structures, Files.
- 2. Solve problems using the above concepts.

Course Outcomes

CO1	Understand the working and architecture of 'C'
CO2	Understand when and how to take decisions, to
	compare and iterate, to simplify the problems.
CO3	Students should be able to implement syntax and
	logics for development according to the user account,
	implement algorithmic solutions in a programming
	language.
CO4	Solve problems of limited scope by writing programs
	using the concepts taught.
CO5	To allow the student to write their own programs
	using standard language infrastructure regardless of
	the hardware or software platform.

Text Books

B.S. Gottfried - Programming With C - Schaum's Outline Series - Tata McGraw Hill 2nd Edition - 2004.

Reference Books

1. E. Balagurusamy - Programming in ANSI C -Second Edition - Tata McGraw Hill- 1999

Unit-1	Introduction	8 hours					
Identifiers - Keywords- Data Types - Access Modifiers - Data							
Type Cor	oversions - Operators - Cond	itional Controls - Loop					
Controls	Controls- Input / Output Operations - Character Test						
Function	Functions						
Unit-2	Arrays	8 hours					

Arrays - One Dimensional Arrays - Two Dimensional Arrays -Multidimensional Arrays - Handling of Character Strings - String - Handling Functions - Table of Strings - enum - Typedef.

Unit-3	Functions	8 hours					
User Def	User Defined Functions - Need for User Defined Functions -						
Category	Category of Functions - Nesting of Functions - Recursion -						
Functions	with Arrays - Storage (Classes - Macros and					
Preproces	Preprocessors.						
Unit-4	Structures	8 hours					

Structures	s - Array of Structures - Arrays within Structures -
Structures	s within Structures - Structures and Functions - Unions
- Size of S	Structures.

8 hours

Pointers -	Pointer V	Variables - Pa	ssing	Poi	nters to Fu	nctions -
Pointers	and One	Dimensional	Arra	y -	Dynamic	Memory
Allocation	ı - Pointers	s and Multi Di	imens	iona	l Arrays	Arrays of
Pointers -	Pointers	to Structures	– Da	ata f	ïles - Ope	ning and
Closing a	Data file -	Creating a Da	ıta file	e - P	rocessing a	Data file

Unit-6	Ad	van	ceme	nt &	4 hours		
	Res	sear	ch				
Advancen	nent	in	the	programming,	research	discussion	&
publicatio	n						

Name of The Course	Basic Englis	L	T	P	C
	h				
Course Code	SLBC1001	0	0	4	2
Prerequisite					
Co requisite		IA	MT	ETE	TOT
			E		
Ant requisite		50	0	50	100

Course Objectives:

Pointers

- Unformatted Data file.

- To expose students to communication challenges (verbal as well as non-verbal) in the professional environment
- To define & interpret verbal and non-verbal messages
- To express and present themselves effectively in business situations

To familiarize students with contemporary writing practices in the business environment

Course Outcomes

CO1	To understand importance & various concepts of effective business communication
CO2	To enable students to understand significance and interpretation of Nonverbal communication

CO3	To understand & execute the concept, principles and various situations in Group Discussion & how to handle them.
CO4	To prepare the students for job interviews.
CO5	To familiarize students with contemporary writing practices in the business environment

Text Book (s)

Meenakshi Raman, Prakash Singh, Business Communication, Oxford University Press Reference Book (s)

Unit-1	Professional	8 hours		
	Communication			
Purpose, Proces	s & Classification of Comm	unication		
Barriers of Comr	nunication			
7Cs of Commun	ication			
Unit-2	Non-Verbal	8 hours		
	Communication			
Role of Non-Ver	bal Communication			
Classification of	Non-Verbal Communication			
Guidelines for de	eveloping Non-Verbal Commi	unication		
Unit-3	Written Communication	8 hours		
Structure & Layo	out of Business letters			
Type of Letters:	Sales, Order, Complaint, E	nquiry, Memo,		
Circular, Notice	, etc.			
Unit-4	Spoken	8 hours		
Introduction to P	ronunciation			
Group Discussion	on, Mock Interviews			
Unit-5	Practical	8 hours		
Exercises				
TT '4 C	A .1	4 hours		
Unit-6	Advancement &	4 Hours		
Unit-6	Research	4 Hours		

Name of The	Programming	L	T	P	C
Course	Essentials in C Lab				
Course Code	BCAC1106	0	0	2	1
Prerequisite					
Co requisite		IA	MTE	ETE	TOT
Ant requisite		70		30	100

List of Experiments:

- 1. Write a program to convert temperature from degree centigrade to Fahrenheit. $^{\circ}F = ^{\circ}C^*9/5+32$
- 2. Write a program to compute the addition, subtraction, product, quotient and remainder of two given numbers.
- 3. Write a program to swap the values of two variables.
- 4. Write a program to compute net amount from the given quantity purchased and rate per quantity. Discount of 10 .is allowed if quantity purchased exceeds 100.
- 5. Write a program to print the sum of digit of a given number.
- 6. Write a program to print the Fibonacci series up to a given number.
- 7. Write a program to print the prime numbers within a given number.
- 8. Write a program to check a given number is prime or not.
- 9. Write a program to check whether a no is an Armstrong number.
- 10. Write a program to determine and print the sum of the following harmonic series for a given value of $n1 + 1/2 + 1/3 + 1/4 + \dots + 1/n$
- 11. Write a program to print the Floyds triangle

- 12. Write a program to read three integer values from the keyboard and display the output stating that they are the sides of the right angled triangle.
- 13. Write a program to accept an year from the user and check whether the entered year is a leap year or not.
- 14. Write a program to print binary equivalent of an integer number.
- 15. Write a program to print the following pattern (take number of lines as input from the user).

*** **

- 16. Write a program to evaluate the following functions to Sin(x) = x x3/3! + x5/5! ... & Cos(x) = x x2/2! + x4/4! x6/6! + ...
- 17. Write a program to _nd out the length of a given string without using the library function strlen().
- 18. Write a program to print the reverse of a given string.
- 19. Write a program to check if a given string is palindrome or not. A string is said to be palindrome if the reverse of the string is equal to the string.
- 20. Write a program to count the number of vowels in a given string.
- 21. Write a program for addition of two nxm matrices
- 22. Write a program for multiplication of two nxmmatrics

- 23. Write a program to compute factorial of a given number using function.
- 24. Write a function for swapping of two numbers.
- 25. Write a program for finding factorial of a number using recursion.
- 26. Write a program to sort an array using Bubble Sort (using function).
- 27. Write a program to search a key number in an array using Sequential Search Method.(use function)
- 28. Write a program to accept student details (name,roll, address,phone no)and store them in a _le and perform the following operations on it.
 - a. Search b. Add c. Delete d. Modify e. Display.

Name of The	Information	L	T	P	C
Course	Technology Lab				
Course Code	BCAC1105	0	0	2	1
Prerequisite					
Co requisite		IA	MTE	ETE	TOT
Ant requisite		70		30	100

	Title of Lab Experiments
1.	Write a procedure to create a resume.
2.	Write a procedure to create a cover page of a project report.
3.	Write a procedure to create a greeting card.
4	Write a procedure to create a company letterhead.
5	Write a procedure to create a simple newsletter.
6.	Write a procedure to create a mail merge letter.
	Write a procedure to create a macro and use it in an
7.	application.
	Write a procedure to create a presentation on basic DOS
	commands given below: a. Dir b. Md c. Cd d. Copy e. Del f.
8.	Сору
9	Write a procedure to create a presentation and add audio to it.
	Write a procedure to create a worksheet with 4 columns,
10.	enter 10 records and find the sum of all columns
	Write a procedure to create a report containing the pay
11.	details of the employee.
12.	Write a procedure to create a student result sheet.
	Write a procedure to create a simple bar chart to represent
13.	the sales of a company for 3 different periods
	Write a procedure to create a worksheet importing data from
14.	database and calculate sum of all the columns
	Write a procedure to create a simple table for result
15.	processing.
	Write a procedure to create a query table for the result
16.	processing table.

- Write a procedure to create a form to update/modify the 17. result processing table.
- Write a procedure to create a report to print the result sheet 8. and marks card for the result.

Name of The	Environmental	L	T	P	C
Course	Science				
Course Code	ENVS1001	3	0	0	3
Prerequisite					
Co requisite		IA	MTE	ETE	TOT
Ant requisite		20	30	50	100

Course Objectives:

- 1. Introduce the fundamentals and abstract concepts of environment studies.
- 2. Learn how concepts of social issues and the environment studies are useful in realistic problem solving.

Course Outcomes

CO1	Students will understand the need for eco-balance
CO2	Also, Knowledge on the method of pollution
	prevention
CO3	Understand the knowledge of Environmental
	Pollution
CO4	Demonstrate Social Issues and the Environment
CO5	Students able to understand Human Population and
	the Environment

Text Books

 Kurian Joseph & R. Nagendran, "Essentials of Environmental Studies", 1stEdition, Pearson Education, 2004.

Reference Books

- 1. Keerthinarayana& Daniel Yesudian, "Environmental Science and Engineering", 1st Edition, Hi-Tech publications, 2004.
- 2. ErachBharucha, "A Text Book for Environmental Studies", Text Book of University Grants Commission, 2004.
- 3.Metcalf&Eddy,"Wastewater Engineering: Treatment and Reuse", New Delhi, TMH

Unit-1	Environm	ent & Natura	al Reso	urces		6 hou	ırs
Definitio	n, scope,	importance,	need	for	public	, Nat	ural
Resource	s – forest 1	resources – u	se, exp	loitatio	on, def	orestat	ion,
construct	ion of mul	tipurpose dan	ns – ef	fect o	n fore	sts, W	ater
resources	s – use of su	ırface and sub	surface	water	; effect	of flo	ods,
drought,	water con	flicts, food	resourc	es –	food	proble	ems,
advantag	advantage and disadvantage of fertilizers & pesticides, effect on					t on	
environn	nent, Energy	y resources -	- need	to de	velop	renewa	able
energy,	land resour	rces - Land	degrad	lation,	lands	lides,	soil
erosion,	desertification	on & case stud	lies.				

Unit-2	Ecology & Bio-Diversity	8 hours
--------	-------------------------	---------

Concept of ecosystem, structure & function of an ecosystem, producers, consumers and decomposers, energy flow, ecological succession, food chains, food webs and ecological pyramids. Bio diversity: Definition, genetic, species and ecosystem diversity,

bio-geographical classification of India, hotspots, threats related to habitat loss, poaching of wildlife, man-wildlife conflicts, Conservation of bio-diversity.

Unit-3 Environmental Pollution 8 hours

Definition – Causes, pollution effects and control measures of Air, Water, Soil, Marine, Noise, Thermal, Nuclear hazards. Solid `waste management: causes, effects and control measures of urban and industrial wastes, pollution measures, case studies, Disaster management: floods, earthquake, cyclone and landslides.

Unit-4 | Social Issues and the Environment | S hours |

Urban problems related to energy & sustainable development, water conservation, rain water harvesting, watershed management, problems related to rehabilitation – case studies, Wasteland reclamation, Consumerism and waste products - Environment | Protection | Act, | Air, | Water, | Wildlife, | Forest | Conservation | Act, | Environmental | legislation | and | public awareness.

Unit-5	Human Population and the	6 hours
	Environment	

Population growth, variation among nations, Population explosion – Family Welfare Programme, Environment and human health, Human Rights, Value Education, HIV/ AIDS, Women and Child Welfare, Role of Information Technology – Visit to local polluted site / Case Studies.

Unit-6	Advancement & Research	4 hours
Advanceme	ent in the course, Research methodolog	gies, research

Advancement in the course, Research methodologies, research discussion & publication

Name of	Professional	L	T	P	C
The Course	Communication				
Course	SLBC1002	0	0	4	2
Code					
Prerequisite					
Co requisite		IA	MTE	ETE	TOT
Ant requisite		50		50	100
requisite					

Course Objectives:

- 1. Make students understand that both oral & written communications are equally important.
- 2. The students should be comfortable with both verbal & written communication.

Course Outcomes

CO1	Students understand the value of business
	communication, written & presentation skills in
	professional life.
CO2	Students should be well equipped with business

	&written communication with effective presentation skills.
CO3	Students understand the Forms of Technical Communication
CO4	Students able to understand presentation strategies
CO5	Understand the fundamentals of human relations

Text Books

- 1 Improve Your Writing ed. V.N. Arora and Laxmi Chandra, Oxford Univ. Press, New Delhi .
- 2 Technical Communication Principles and Practices by Meenakshi Raman &Sangeeta Sharma, Oxford Univ. Press 2007, New Delhi.

Reference Books

- 1 Effective Technical Communication by Barun K. Mitra, Oxford Univ. Press, 2006, New Delhi.
- Business Correspondence and Report Writing by Prof. R.C. Sharma & Krishna Mohan, Tata McGraw Hill & Co. Ltd., New Delhi.
- 3 How to Build Better Vocabulary by M.Rosen Blum, Bloomsbury Pub. London.
- 4 Word Power Made Easy by Norman Lewis, W.R.Goyal Pub. & Distributors; Delhi.
- 5 Developing Communication Skills by Krishna Mohan, MeeraBanerji- Macmillan India Ltd. Delhi.
- 6 Manual of Practical Communication by L.U.B. Pandey& R.P. Singh; A.I.T.B.S. Publications India Ltd.; Krishan Nagar, Delhi.

Unit-	Unit- Basics of Technical Communication		
1			
Techni	cal Communication: features; Distinction	between	
Genera	al and Technical communication; Language as	a tool of	
commu	unication; Levels of communication: Into	erpersonal,	
Organi	zational, Mass communication; The	flow of	
Comm	Communication: Downward, Upward, Lateral or Horizontal		
(Peer group); Importance of technical communication; Barriers			
to Communication			
I Init	Constituents of Technical Written	Q houng	

Unit-	Constituents of Technical Written	8 hours
2	Communication	

Words and Phrases: Word formation. Synonyms and Antonyms; Homophones; Select vocabulary of about 500-1000 New words; Requisites of Sentence Construction: Paragraph Development: Techniques and Methods -Inductive, Deductive, Spatial, Linear, Chronological etc; The Art of Condensation- various steps.

Unit-	Forms of Technical Communication	8 hours
3		
Busine	ss Letters: Sales and Credit letters; Letter o	f Enquiry;

Letter of Quotation, Order, Claim and Adjustment Letters; Job application and Resumes. Official Letters: D.O. Letters; Govt. Letters, Letters to Authorities etc. Reports: Types; Significance; Structure, Style & Writing of Reports. Technical Proposal; Parts; Types; Writing of Proposal; Significance. Technical Paper, Project. Dissertation and Thesis Writing: Features, Methods & Writing.

Unit-	Presentation Strategies	8 hours
4		

Defining Purpose; Audience & Locale; Organizing Contents; Preparing Outline; Audio-visual Aids; Nuances of Delivery; Body Language; Space; Setting Nuances of Voice Dynamics; Time- Dimension

Unit-	Fundamentals of Human Relations	6 hours
5		

Relationships, Interpersonal Group Intra-personal, and Transactional Analysis **Implications** for Managers Organizational Context. Formal Written Communication: Official Letters, Report, Writing: Categories Formats, Memorandums and Circulars, Agenda and Minutes, Resume, Drafting Advertisements. Enquires Placing of Replies, Quotations, Voluntary Offers, Order. Cancellation of Order, Complains and Adjustments. Formal Communication: Group Discussion, Extempore, Business Negotiation, Public Speaking, Meeting, Toasting, Counselling, Business Presentation. Negotional Skills. Social Skills for Managers: Update of Etiquettes a Manager should observe in Various Formal and Informal Situations; The Knowledge of Body Language.

Unit-6	Advancement & Research	4 hours
Advanceme	ent in the course, Research methodologic	ies, research
discussion	& publication	

Name of The	Data Structures	L	Т	P	C
Course	using C				
Course Code	BCAC1211	3	0	0	3
Prerequisite		•			•
Co requisite		IA	MTE	ETE	TOT
Ant requisite		20	30	50	100

Course Objectives:

- 1. Introduce the fundamentals and abstract concepts of Data Structures.
- 2. Introduce searching, sorting techniques
- 3. Learn how concepts of data structures are useful in problem solving.

Course Outcomes;

	· · · · · · · · · · · · · · · · · · ·
CO1	Understand the Basic concepts of Data Structures.
CO2	Understanding various searching & sorting
	techniques.
CO3	Analyze step by step and develop algorithms for
	Linked List to solve real world problems.
CO4	Applying various data Structures like Stacks, Queues
	in real world problems.
CO5	Implement and developed new program for graphs
	and trees using C.

Text Books

- Data Structures: By Seymour Lipschutz, Tata Mcgraw-Hill Publication
- 2. Data Structure and algorithm using C :ByR.S.Salaria-Khanna Publication.
- Horowitz and Sahani, "Fundamentals of Data Structures", Galgotia Publication

Reference Books

- 3. Aaron M. Tenenbaum, YedidyahLangsam and Moshe J. Augenstein "Data StructuresUsing C and C++", PHI
- 4. Jean Paul Trembley and Paul G. Sorenson, "An Introduction to Data Structures with applications", McGraw Hill
- 5. R. Kruse etal, "Data Structures and Program Design in C", Pearson Education
- 6. Lipschutz, "Data Structures" Schaum's Outline Series, TMH
- 7. G A V Pai, "Data Structures and Algorithms", TMH

Unit-1	Introduction to Data Structure	6 hours		
Introduction,	Basic Terminology : Data and inform	mation, ADT,		
Data Organiz	zation and types of Data Structure.			
Unit-2	Arrays	8 hours		
Representation	on of Linear Arrays, Types of Arrays:	1D,2D & M-		
D Concept,	Sorting & Searching Algorithms-Bubl	ole, Selection,		
Merge, Quic	k sort, linear and binary search. Typ	e of Memory		
Allocations				
Unit-3	Linked List	8 hours		
Concept of	Linked List, Representation of li	nked List in		
memory, Me	mory Allocation, Garbage Collection,	Overflow and		
Underflow, '	Traversing a linked list, Searching	a linked list,		
Insertion &	Deletion in Linked List, More types	of linked list:		
Header Linke	Header Linked List, Two way List and Circular linked list			
Unit-4	Stacks, Queues, Recursion	8 hours		
Concepts of Stack, Operation on Stack, Array Representation of				
Stack, Arithmetic Expression POLISH Notation, Concepts of				
Queue, Operation on Queue, Representation of queues, Other				
types of que	types of queue: Priority Queues, Deque and Circular queue.			

Recursion: factorial number, Fibonacci series and Tower of				
Honai				
Unit-5	Introduction of Trees and Graph	6 hours		
Introduction of Trees – Binary Trees – Binary Search Trees.				
Types of Graph				
• I	•			
Unit-6	Advancement & Research	4 hours		
Unit-6	•			

Name of The	Web	L	T	P	C
Course	Technology				
Course Code	BCAC1203	3	0	0	3
Prerequisite					
Co requisite		IA	MTE	ETE	TOT
Ant requisite		20	30	50	100

Course Objectives:

This course is intended to provide students with the knowledge and skills necessary for building and evaluating web sites. It covers a range of topics including: basic concepts of the Internet and internet browsers, fundamentals of Website design, Websites building tools and languages, basics of HTML (text, fonts, colors, images, lists, tables, frames, forms), Scripting and Scripting Languages (VB Script, Java Script), Website publishing, Website evaluation and assessment, case studies.

Course Outcomes

CO1	The student will gain programming skills both in			
	basic and advanced levels using HTML and CSS.			
CO2	Demonstrate the knowledge and able to apply the design			
	principles, techniques and technologies to the			
	development of creative websites using JS and HTML			
CO3	Apply different syntactical elements of vbscript			
CO4	The student will be able to create ASP based web			
	applications			
CO5	Understand database connectivity procedures for web			
	applications			

Text Books

Web Design: A Complete Introduction by Nigel Chapman and Jenny Chapman. John Wiley & Sons

Reference Books

HTML 4.0, No Experience required – E. Stephen Macj, J. Platt (bpb)

Completer Reference HTML - Thomas A. Powell (TMH)
Dynamic HTML in action - Michele Petrovisjy (TMH)
Unleashed HTML - (Techmedia SAMS)

Unit-1	Introduction and H	ITML	6 hours		
Basic web de	Basic web designing: Introduction to web browser, architecture				
of web brow	ser, web page, static	& dynamic we	b pages, home		
page, web-si	te, Web-servers & o	clients, www.	Introduction to		
HTML: Hist	ory, structure of H	TML documen	nt, creating &		
executing H'	ΓML. Tags of HTM	IL, Creating I	Lists & Links,		
Creating Bo	okmarks, Image tag	s, Tables and	Frames tags.		
Forms and C	SS: Understanding	Form, <form< th=""><td>> tag, creating</td></form<>	> tag, creating		
text boxes, buttons, checkboxes, radio buttons, hidden control,					
password, lists & dropdown list, textarea. Submitting a form, get					
& post met	hod. Creating CSS	, applying C	SS to HTML		
documents. U	documents. Use of <meta/> Tag.				

Unit-2 **JavaScript** 8 hours JavaScript: Introduction: Scripting Language, The Use of JavaScript, UsingJavascript in an HTML document, <SCRIPT> Tag. Overview of Javascript Programming: Variable, Scope of variables, number & string, Operators Statements: if-else, for, while, break, continue, for-in, new, return. Arrays, JavaScript Functions & Objects, Document Object Model (DOM), Hierarchy of objects. Properties & Methods of Objects, Event Handling & Form Validation.

Unit-3	VBScript	8 hours
Introduction,	VBScript Statements and loops, Ar	rays, VBScript
objects, VBS	Script layout statements, error ha	ndling, adding
objects, Forn	ns, Controls & managing transacti	ions, VBScript
event program	nming, Procedures & Functions	

Unit-4 **ASP** 8 hours Introduction, Variables, Data types of ASP, Statements, Request & Response Objects: Response Object - buffering page, page caching, Request Object - QueryString collection, form collection, server-variables collection, working with HTML forms, retrieving form data suing text boxes, textareas, buttons,

checkboxes, select lists. Form validation, Session & Application Object.

T/DC 1

Unit-5 **Database and File system** 6 hours ASP with Databases: Connection and data sources, creating connections with OLEDB and ODBC, connecting to SQL server with OLEDB and ODBC, connection to MS-Access, Executing SQL statements. Working with Record set, File System Object(FSO), Folder object

Unit-6	Advancement & Research	4 hours
Advanceme	ent in the course, Research methodologi	es, research
discussion of	& publication	

Name of The	Enterprise	L	T	P	C
Course	Resource Planning				
Course Code	BCAC1204	3	0	0	3
Prerequisite					
Co requisite		IA	MTE	ETE	TOT
Ant requisite		20	30	50	100

Course Objectives:

- Know basic business functional areas and explains how they are related.
- Illustrate how un-integrated information systems fail to support business decision and how integrated information systems can help a company prosper by providing business managers with accurate, consistent, and current data.
- Understand how Enterprise Resource Planning software is used to optimize business processes acquire experience in using ERP software that can be applied in further coursework

Course Outcomes

CO1	Understand the basic concepts of ERP.			
CO2	Understand the enterprise modelling and related concepts			
CO3	Identify different technologies used in ERP.			
CO4	Understand and apply the concepts of ERP implementation and Perspective and ERP Modules.			
CO5 Understand different tools/technologies used in E				

Text Books:

Enterprise Resource Planning, Alexis Leon, Tata McGraw-

Concepts in Enterprise Resource Planning, Third Edition **Bret Wagner & Ellen Monk**

Reference Books

ERP

2

Concepts in Enterprise Resource Planning, Joseph A. Brady, Ellen F. Monk, Bret J. Wagner.

Enterprise Resource Planning Systems, Daniel E. O'Leary, Cambridge University Press.

Unit-	ERP: An Overview	6		
1		hours		
Introduction to ERP, Reasons for Growth Of ERP, Problem areas				
in ERP implementations, The future of ERP, Characteristics and				
features of ERP, Benefits of ERP.				
Unit- Enterprise Modelling and Integration for 8				

hours

Enterprise-An overview, What is enterprise , Integrated Management Information, The role of enterprise, Business modelling, Integrated Data Model, Role of Common/Shared Enterprise Database, Establishing Customer-Enterprise Link, Establishing Vendor-Enterprise Link, Client/Server Architecture and Enterprise wide Computing, Characteristics of client/Server Architecture, Different Components of ERP Client/Server Architecture

Unit-	ERP And related Technologies	8
3		hours

BPR(Business Process reengineering) :Definition, The different phases of BPR, Enterprise Redesign Principles, BPR and IT, Data Warehousing, Data Warehouse Components, Structure and Uses of Data Warehouse, Data Mining, What Is Data Mining, Data Mining Process, Advantages and Technologies Used In Data Mining, OLAP, Supply Chain Management: Definition, Benefits, ERP VsSCM, CRM

Unit-	ERP Implementation	8
4		hours

Evolution, Evolution of ERP, Evolution of Packaged Software Solutions, The Obstacles in ERP implementation, ERP Implementation Lifecycle (Different Phases), Implementation Methodology, ERP Implementation-The Hidden Costs, In-house Implementation-Pros and Cons, Vendors and role of vendors for ERP, Consultants and role of consultants for ERP.

Unit-	Technologies In ERP System	6
5		hours

Introduction, Electronic Data Interchange(EDI), Use of EDI, Evolution of EDI, Benefits of the EDI, EDI Standards, EDI Services, EDI Components, EDI Administration, EDI Integration, ALE Integration, Internet Integration, OCR Integration

Unit-	Advancement & Research	4
6		hours

Advancement in the course, Research methodologies, research discussion & publication

Name of The	Numerical	L	T	P	C
Course	Methods				
Course Code	BCAC1205	3	0	0	3
Prerequisite					
Co requisite		IA	MTE	ETE	TOT
Ant requisite		20	30	50	100

Course Objectives:

In this course we will learn various numerical methods for finding solutions to the following Mathematical problems: 1.Roots of Equations, 2.Systems of Linear Algebraic Equations, 3. Interpolation, 4. Differentiation, 5. Integration, 6. Ordinary Differential Equations, 7. Statistical Quality Control Methods (Control Charts)

Course Outcomes

Employ the concept of errors and apply various				
numerical methods to find the roots of non linear				
equations and solution of system of equations (K3)				
Apply interpolated formulas to find approximated				
polynomials and missing values (K3)				
Solve differentiation and integration for complex				
functions using numerical methods (K4)				
Solve Ordinary differential equations using different				
numerical methods (K4)				
Apply basic statistical methods to solve problems of				
basic data science problems of real world (K4)				

Text Books:

1-Raja Raman V, Computer Oriented Numerical Methods, Prentice Hall.

2-Grewal B. S., Numerical Methods in Engineering and Science, Khanna Publishers, Delhi.

3-Gupta S. P., Statistical Methods, Sultan and Sons.

Reference Books:

Unit-3

- 1- Gerald & Wheatley, Applied Numerical Analyse, AW.
- 2- Jain, Iyengar and Jain, Numerical Methods for Scientific and Engineering Computations, New Age Int.
- 3-Veerarajan T. Ramachandran T., Theory and Problems in Numerical Method, TMH.

Unit-1	Intr	oduction an	d Solution of	f nonlinear	8 hours
	equa	ation			
Advantag	e of	Numerical	techniques,	Computer	Arithmetic,

Mathematical preliminaries, Precision and Errors, types of errors and General error formula, Error in a series approximation;
Non-Linear Equations: Bisection Method, Newton-Raphson method, Iteration method, Method of false position, Methods of finding complex roots, Rate of convergence of Iterative methods, Polynomial Equations

Unit-2	Data interpolation and methods	8 hours				
Finite Differences, Difference tables, Polynomial Interpolation:						
Newton's	Newton's forward and backward formula, Central Difference					
Formulae	: Gauss forward and backward formula,	Stirling's,				
Bessel's,	Interpolation with unequal intervals: L	angrange's				
Interpolation, Newton Divided difference formula.						

6 hours

Solution of Linear Equation

Direct Methods: System of Linear Equation, Gauss Elimination, Jordon, Pivoting and non-Pivoting,

Iterative Methods: Gauss seidel and Jacobi Method

Unit-4	Numerical Integration, Differentiation	8 hours
	and differential equations	

Numerical differentiation, Numerical Integration: Trapezoidal rule, Simpson's 1/3 and 3/8 rule,

Differential Equation : Picard's Method, Euler's Method, Taylor's Method, Predictor Corrector Methods, Runge-Kutta Methods

I	Unit-5	Regression and curve fitting	6hours
I	Frequency	y chart, Regression Analysis, Linear and	Nonlinear
I	Regressio	on, Multiple regression, , Curve fitting by	method of
I	least squa	ares, fitting of straight lines, polynomials, e	exponential
I	curves etc	Statistical Quality Control methods.	

Unit-6	Advancement & Research	4 hours
Advanceme	ent in the course, Research methodologi	es, research
discussion	& publication	

Name of The	Python	L	T	P	C
Course	Programming				
Course Code	BCAC1202	3	0	0	3
Prerequisite					
Co requisite		IA	MTE	ETE	TOT
Ant requisite		20	30	50	100

Course Objectives:

This course introduces the student to the Python language. Upon completion of this class, the student will be able to write non trivial Python programs dealing with a wide variety of subject matter domains. Topics include language components, the IDLE environment, control flow constructs, strings, I/O, collections, classes, modules, and regular expressions. The course is supplemented with many hands on labs using Windows

Course Outcomes

CO1	Write Basic Programs using Python programming constructs.
CO2	Work with python string handling techniques and user defined functions.
CO3	Use data structures like Lists, tuples and dictionaries.
CO4	Understand File handling and Regular Expressions.
CO5	Apply Object oriented programming techniques and database.

Text Book (s)

- 1. Tony Gaddis, Starting Out with Python, 3rd edition, Pearson
- 2. Y. Daniel Liang, Introduction to Programming Using Python, Pearson
- 3. Budd T A, Exploring Python , 2011, Tata McGraw Hill Education
- 4. Learning Python, Fourth Edition, Mark Lutz, O'Reilly publication

Reference Book (s)

- Downey, Allen B., Think Python: How to Think Like a Computer Scientist. O'Reilly, 2012. Obtain free PDF at
 - http://www.greenteapress.com/thinkpython/
- Python Programming: An Introduction to Computer Science (Second Edition) John Zelle, ISBN 978-1-59028-241-0-9, Franklin, Beedle& Associates Inc., 2004.

History , Features , Working with Python, Installing Python, basic syntax, interactive shell, editing, saving, and running a script. The concept of data types; variables, assignments; immutable variables; numerical types; Arithmetic and Logical operators and Boolean expressions. Debugging, comments in the program; understanding error messages; Catching exceptions using try and except. Built-in functions – type(), id(), eval(), random, chr(), ord(); Conditional Statements : If, If-else, Nested if-else; Looping: For, While, Nested loops; Control Statements: Break, Continue, Pass:

Unit-2	Function and	8 hours
	Strings	

Functions in Python: Defining a function, Calling a function, Types of functions, Function Arguments – default arguments, keyword arguments, variable/arbitrary arguments. Global and local variables. Recursive functions. String manipulations: subscript operator, indexing, slicing a string; strings and number system: converting strings to numbers and vice versa. String functions: len(), upper(), lower(), casefold(),find(),replace(),split(),join(). Formatting using % (string modulo) and format operators

Unit-3	Lists, Tuples and	8 hours
	Dictionaries	

Basic List operators, List methods, iterating over a list, replacing, inserting, removing an element; searching and sorting lists, calculating the sum and average of items in a list; Tuples - sequence of values, immutability, Comparing tuples, Tuple assignment, tuple methods

8 hours

School of Computing Sciences and Engineering

Unit-4	Dictionaries and	8 hours
	Files	

Dictionary- Store data as key-value pairs in dictionaries, dictionary methods, search for values, change existing values, add new, key-value pairs, and delete key-value pairs, nesting objects, sorting, dictionary literals, adding and removing keys, accessing and replacing values; traversing dictionaries.

Manipulating files and directories, os and sys modules; text files: reading/writing text and numbers from/to a file

reading/writing text a	nd numbers from/to a me				
Unit-5	Object Oriented	6 hours			
	Programming				
Class, Objects, Class	Class, Objects, Class variables, Instance variables, Types of				
methods, Inheritance					
Unit-6	Advancement &	4 hours			
	Advancement & Research	4 hours			
Unit-6	Research	4 hours ethodologies, research			

Name of The	Disruptive	L	T	P	С
Course	Technologies				
Course Code	BCA9004	3	0	0	3
Prerequisite	Basic programming	Lang	guages	}	
Co requisite		IA	MTE	ETE	TOT
Ant requisite		20	30	50	100

Course Objectives:

- i) Able to outline the strength of various systems and their role in an Industry 4.0 world
- Learners will gain deep insights into the fundamental concepts of disruptive technologies, their promises as well as their current limitations
- iii) To provide an overview with the fundamental techniques and principles in the exciting growing field of big data analytics.
- iv) To understand the state of the art of Arduino architecture and Sensors
- v) To study about different tools like Python, Tableau and Arduino

Course Outcomes

CO1	Understand the drivers and enablers of Industry 4.0 and				
	how organizations and individuals should handle				
	challenges to reap the benefits.				
CO2	Build the deep insight into the main methods used in				
	machine learning (ML) and artificial intelligence (AI)				
	Utilize the potential impact of Artificial Intelligence and				
	machine learning				
CO3	Acquire fundamental enabling techniques and scalable				
	algorithms to Interpret business models and scientific				

	computing paradigms, and apply software tools for big data analytics.
CO4	Analyse basic IOT protocols and its characteristics to
	determine the performance
CO5	Implement the basic IoT applications on embedded
	platform

Text Book (s)

Unit-2

Reference Book (s)

- Chris Albon "Machine Learning with Python Cookbook "O'Reilly Media; March 2018
- Marleen Meier David Baldwin "Mastering Tableau 2019.1: An expert guide to implementing advanced business intelligence and analytics with Tableau 2019.1, 2nd Edition Feb 2019
- 3. CharalamposDoukas "Building Internet of Things With the Arduino: Volume 1" Mar 2012

Alasdair Gilchrist "Industry 4.0: The Industrial Internet of Things" June 2016

Unit-1	Introduction to Industry 4.0	6 hours				
Introduct	Introduction - Business and IT Trends - Enterprise Software					
Trends- 1	Trends- Key Emerging, Invention & Innovation, Industry 4.0,					
Industry	Evolution, Key Technologies - AR/V	R- Digital				
currencie	currencies and Blockchain Technology- Intelligent Computing					
AI and Autonomous Robots- Data Science and Deaplearning-						
Computer Vision – Industrial IoT.						

Introduction, Scope of AI & ML, Applications, Challenges, Types of learning: Supervised, Unsupervised, Reinforcement. Preparation of Data-Training and Testing. Introduction to Python, Data types, Variables, Conditions, Loops, List, Dictionary, Functions, Class and Objects, NumPy array and operations, Pandas Dataframe and operations, Matplotlib Visualization, Scikit-Learn usage, installation of Anaconda

Introduction AI & ML using Python

Unit-3 Introduction Data Analytics using Tableau 8 hours

distribution, End-to-end AI & ML Project.

Introduction - Big data, challenges, applications, Big data analytics algorithms, Big data system, Big Data Life Cycle, data representation, cleansing, validation, Data analysis and visualization. Tableau Introduction- Installation, connecting to data, Aggregate functions, sorting, Calculation, grouping, Set, Action, Dashboard creation.

Unit-4	Introduction to Embedded system	8 hours
	&arduino	

Overview of Embedded Systems, Components of Embedded Systems, about arduino IDE, Arduino architecture and pin details, Digital & Analog I/O's, Types of Arduino boards, Installing and Setting up the Arduino development environment

and simulation software, Software simulation on LED and switches, Software simulation on motor with driver, Software simulation on analog and digital sensors .

Unit-5	Unit-5 Introduction to IoT& Programming	
	Concepts	

Introduction to IoT , IoT Protocols, IoT open source platform and sensors, Basic programming Structure, Variables, constants and data types, Operators, Control Structure, Library Functions, Creating account in open source IoT platform, Configuring and programming Wi-Fi module with MCUs, Interfacing switches and LEDs with MCUs , Interfacing motor and driver with MCUs , Interfacing analog and digital sensors with controller. Line follower robot.

Unit-6	Advancement & Research	4 hours			
Advanceme	Advancement in the course, Research methodologies, research				
discussion	& publication				

Name of The	Data Structures	L	T	P	C
Course	using C Lab				
Course Code	BCAC1201	0	0	2	1
Prerequisite					
Co requisite		IA	MTE	ETE	TOT
Ant requisite		70		30	100

List of Experiment:

- 1. Write a program to compute minimum/maximum of a given array.
- 2. Write a program to sort given set of numbers in ascending/descending order using Bubble Sort and analyze its complexity.
- 3. Write a menu-based program to perform array operations: deletion of an element from the specified position, inserting an element at the specified position, printing the array elements.
- 4. Write a program to search an element in the array using linear search.
- 5. Write a program to search an element in a 2-dimensional array.
- 6. Write a program to perform following operations in matrix:
 - a. Addition
 - b. Subtraction
 - c. Multiplication
 - d. Transpose
- 7. Write a menu-based program to perform following operations on single linked list:
 - a. To insert a node at the beginning of the list.
 - b. To insert a node at the end of the list.

- c. To insert a node after a given node in the list.
- d. To delete the first node from the list.
- e. To delete the last node from the list.
- f. To delete a node after a given node from the list.
- g. To delete a node at a given position from the list.
- 8. Write a menu-based program to perform following operations on double linked list:
 - a. To insert a node at the beginning of the list.
 - b. To insert a node at the end of the list.
 - c. To insert a node after a given node in the list.
 - d. To delete the first node from the list.
 - e. To delete the last node from the list.
 - f. To delete a node after a given node from the list.
 - g. To delete a node at a given position from the list.
- 9. Write a menu-based program to perform following operations on circular linked list:
 - a. To insert a node at the beginning of the list.
 - b. To insert a node at the end of the list.
 - c. To insert a node after a given node in the list.
 - d. To delete the first node from the list.
 - e. To delete the last node from the list.
 - f. To delete a node after a given node from the list.
 - g. To delete a node at a given position from the list.
- 10. Write a menu-based program to implement stack operations: PUSH, POP using array implementation of stack.
- 11. Write a menu-based program using functions to implement stack operations: PUSH, POP using linked implementation of stack.
- 12. Write a program to convert infix expression into postfix expression and then to evaluate resultant postfix expression.
- 13. Write a program to solve Towers of Hanoi Problem.
- 14. Write a menu-based program to implement linear queue operations: INSERTION, DELETION using array implementation of queue.
- 15. Write a menu-based program to implement linear queue operations: INSERTION, DELETION using linked list implementation of queue.
- 16. Write a menu-based program to implement circular queue operations: INSERTION, DELETION.
- 17. Write a program to traverse a binary tree using PRE-ORDER, IN-ORDER, POST-ORDER traversal techniques.
- 18. Write a menu-based program to perform operations for a binary search tree (BST).
 - a. Search an element
 - b. Find minimum
 - c. Find maximum
 - d. Insertion
 - e. Deletion

- 19. Write a program to traverse a graph using breadth-first search (BFS), depth-first search (DFS).
- 20. Write a program to sort given set of numbers in ascending/descending order using insertion sort and also search a number using binary search.
- 21. Write a program to sort given set of numbers in ascending/descending order using Quick sort and selection sort. Also record the time taken by these two programs and compare them.
- 22. Write a program to sort given set of numbers in ascending/descending order using Merge sort.

Name of The	Web Technology	L	Т	P	C
Course	Lab (PBL)				
Course Code	BCAC1213	0	0	2	1
Prerequisite		•			
Co requisite		IA	MTE	ETE	TOT
Ant requisite		70		30	100

List of Experiment:

- 1. To create a basic web page consisting of various HTML tags.
- 2. To create HTML links.
- 3. To create HTML Table.
- 4. To create HTML list.
- 5. To create CSS file in HTML.
- 6. To create Student Registration Forms in HTML.
- 7. To create HTML Frame.
- 8. Introduction to java script like Add,DIV,Mul,Sub etc.
- 9. Using java script variables, data type and object.
- 10. Using java script function.
- 11. Using java script using validation in HTML forms.
- 12. Introduction to VB Script like Add, Div, Mul, Sub etc.
- 13. Using data type & variable.
- 14. Using VB Script loops and conditions.
- 15. Using VB script variable & procedures.
- 16. Introduction to ASP
- 17. WAP in ASP displaying the current date and time
- 18. WAP in ASP print the hours minutes and second

Value Added List of Experiments

1. In the XML create a program of employee detail like employee id, name, salary, designation.....

Name	e of The	Python	L	T	P	C
Cour	se	Programming Lab				
Cour	se Code	BCAC1212	0	0	2	1
Prere	equisite			ı	1	
	equisite		IA	MTE	ETE	TOT
	equisite		70		30	100
S.	•					
No.		Title of Lab Expe	riment	S		
	Write a pyt	hon program to print	t all pr	ime n	umbei	rs
1		nterval given by user	-			
		hon program to doub		values	in a l	ist
2	using map()					
		hon program to show	the in	nporta	nce o	f
3		ecedence and associa		_		
	operators					
		hon program to do th	e follo	wing		
	operations	Fg				
4	-	versing a given integer	numbe	er.		
		d the sum of digits of			numb	er.
		hon program to impl				
5		ng random()		,	,	
_		hon program to utiliz	ze all in	-built	t	
6		al functions.				
	Write a pyt	hon program to chec	k the g	iven s	tring	is
7		or not, without using	_		_	
0	Write a pyr	thon program to find	a chara	cter a	nd nu	mber
8	of occurren	ce of a given character	r in a st	ring.		
0	Write a p	ython program to ma	anage	studen	t's de	etails
9	using diction					
10	Write a p	ython program to d	esign g	grocer	ies bi	lling
10	system usir	ng dictionary.				
1.1	Write a pyt	hon program to get a	date fro	om use	er and	give
11	the day as o	output				
	Write a py	ython program to fin	d the	numbe	er of	days
12	between tw	o dates given by user.				
	(Age Calcu	lator)				
12	Write a py	thon program to fin	d Facto	orial o	of a g	given
13	number wit	hout using Recursion	Concep	ot.		
14	Write a pyt	hon program to find s	um of l	N give	n nun	bers
14	using Recu	rsion by using Functio	n.			
15	Write a p	ython program using	the m	odule	, mai	ntain
15	students da	ta and retrieve it accor	dingly.			
1.0		thon program to imp		t a us	er de	fined
16		on using module.				
1.7		hon program to copy t	he cont	ent of	one fi	ile to
17	another file					
18		thon program to searc	h the	give c	haract	er or

19	Write a python program which defines a function f. f takes two arguments a and b and do (a+b) / (a-b) computation. Implement exception handling with try, catch and else.		
	Write a python program to take input from the user		
	again and again until correct value is given by user.		
	Three user defined exceptions can be created i.e:		
	A. NegativeValueError (if value entered is		
20	negative),		
	B. ValueTooLarge (if value entered is more than		
	stored value), and		
	C. ValueTooSmall (if the value stored is less than		
	stored value).		
Experiments beyond curriculum:			
1	Write an interactive program to create a set of data to		
	maintain the database of examination results.		
2	Write a program to maintain student's database in file.		

Name of The	Computer	L	T	P	C
Course	Architecture				
Course Code	BCAC2101	3	0	0	3
Prerequisite					
Co requisite		IA	MTE	ETE	TOT
Ant requisite		20	30	50	100

Course Objectives:

To introduce students to the different functional units of a computer system and to describe the various concepts of the same.

Course Outcomes

Study of the basic concept of computer organization			
Implementation of control unit techniques and the			
concept of Pipelining			
Analysis of the design of arithmetic & logic unit and			
understanding of the fixed point and floating point			
arithmetic operations.			
Understanding the different ways of communicating with			
I/O devices and standard I/O interfaces			
Understanding the hierarchical memory system, cache			
memories and virtual memory			
Understanding the parallel processing ,Flynn's			
classification			

Text Book (s)

1 M. M. Mano – Computer System Architecture – 3rd Edition – PHI – 1994.

Reference Book (s)

Manipulation-Program Control.

- 1. SubrataGhoshal-Computer Architecture and Organization-First Impression-Pearson-2011
- 2. J. P. Hayes Computer Architecture and Organization McGraw–Hill 1988 3rd Edition.

Unit-	Register Transfer and	8 hours			
1	Micro-operations				
Register	Transfer Language-Register Tr	ansfer-Bus and Memory			
Transfe	rs-Arithmetic Micro Operations-	Logic Micro Operations-			
Shift N	Shift Micro Operations-Arithmetic Logic Shift Unit-Basic				
Comput	er organization and design-Ins	truction Codes Control-			
Instruct	Instruction Cycle- Memory Reference Instructions-Input Output				
and Interrupt-Complete					
Unit-	Central Processing Unit 8 hours				
2					

Introduction-General Register Organization-Stack organization, Instruction Format, Addressing Modes-Data Transfer and

Unit-3	Computer Arithmetic	8 hours				
Comput	Computer Arithmetic – Addition and Subtraction –					
Multipli	Multiplication and Division Algorithms – Floating-Point and					
decimal	Arithmetic operations					
Unit-4	Unit-4 Input–Output Organization 8 hours					
Input-C	Input–Output Organization – Peripheral devices – I/O Interface –					
Asynch	ronous Data Transfer – Modes of	f Transfer – Direct				
Memory	y – Access I/O Processor					
Unit-5	Memory Organization	8 hours				
Memory Hierarchy – Associative Memory- Cache Memory -						
Virtual	Virtual Memory					

Unit-6	parallelism	4 hours				
Parallel processing challenges – Flynn's classification – SISD,						
MIMD						

Name of The	Database	L	T	P	C
Course	Management System				
Course Code	BCAC2102	3	0	0	3
Prerequisite					
Co requisite		IA	MTE	ETE	TOT
Ant requisite		20	30	50	100

Course Objectives:

- Explain data management and the use of various techniques in the manipulation of data subject to various constraints.
- 2. Describe the entity relationship diagram and to explain the basic concepts of database recovery, concurrency control, security and integrity.

Course Outcomes

CO1	Identify data relationships and to design relational
	database tables adopting the normalization rules.
CO2	Students able to understand E-R Modeling.
CO3	Be familiar with the concept of Normalization.
CO4	Understand the concept of Data Models.
CO5	Be familiar with the concept of Back Up & Recovery.
CO6	Understanding advance concepts in Database

Text Book (s)

 Henry F. Korth and Abraham Silberschatz: Database system concepts, McGraw Hill International Publication, 1988 (Chapters 1 to 6 and 9 to 13), 2nd Edition,1991.

Reference Book (s)

- **1.** Jeffrey D Ullman: Principles of data Base systems, Galgotia Publishers, 2nd Edition 1994.
- 2. C.J. Date, An Introduction to database Systems, Third Ed., Narosa 3rd Edition 1995.

	793.		
Unit-1	Introduction:	6 hours	
	Basic		
	Terminology		
Introduction: Purpose of Database systems - overall system			
structure – Data Mode	1		
Unit-2	E-R Modeling	8 hours	
Entity relationship mo	del: entities and e	ntity sets relationships -	
mappings constraints -	primary keys - E.	R diagram	
Unit-3	Normalization	8 hours	
Relational database de	Relational database design: pitfalls – Normal Forms - 1 NF, 2NF		
3NF and BCNF			
Unit-4	Data Models	8 hours	
Basic concepts of Hierarchical data model – Tree structure			
Basic concepts of Hier	archical data mode	el – Tree structure	
Basic concepts of Hier diagram, Network Data			
_			
diagram, Network Data	a Model-Data Stru	cture diagram	
diagram, Network Data	a Model-Data Stru Back Up & Recovery	cture diagram 6 hours	
diagram, Network Data Unit-5	a Model-Data Stru Back Up & Recovery base recovery -cor	cture diagram 6 hours	
diagram, Network Data Unit-5 Basic concepts of data	a Model-Data Stru Back Up & Recovery base recovery -cor	cture diagram 6 hours	
diagram, Network Data Unit-5 Basic concepts of data Database security and	a Model-Data Stru Back Up & Recovery base recovery -cor integrity	cture diagram 6 hours currency control -	
diagram, Network Data Unit-5 Basic concepts of data Database security and Unit-6	Back Up & Recovery base recovery -corintegrity Advancement & Research	cture diagram 6 hours currency control -	

Name of The	Java	L	T	P	C
Course	Programming				
Course Code	BCAC2103	3	0	0	3
Prerequisite					
Co requisite		IA	MTE	ETE	TOT
Ant requisite		20	30	50	100

Course Objectives:

Introduce students Core Java Concepts and to teach students the basic concepts of Java programming. This course covers preliminaries, I/O streaming and file handling and teach students how to program applets in Java, networking and allow the students to implement effectively

Course Outcomes

CO1	Implement and use efficiently the java programs, can develop applets, able to access database with JDBC, work with networking protocols using java with attractive GUI
CO2	Language Basics
CO3	String Handling
CO4	Exception Handling
CO5	Input / Output

Text Book (s)

1. R. Naughton and H. Schildt – Java2 (The Complete Reference) – Fifth Edition – TMH – 2004.

Reference Book (s)

Unit-2 | Language Basics

- 1. K. Arnold and J. Gosling The Java Programming Language -3^{rd} Edition., Pearson Edu, 2005
- 2. David Flanagan Java in a Nutshell: A Desktop Quick Reference for Java Programmers–O'Reilly & Associates, Inc. 1999
- 3. Bruce Eckel Thinking in Java Prentice Hall, 2nd Ed 2002

Introduction - Object oriented fundamentals, History-Java and the Internet-Java Applets and Applications, Features of Java, Java Virtual Machine (JMV), Byte-Code ,JAVA buzzwords, JAVA Environments, Command Line Arguments, Java program structure, Reserved keywords, Identifiers, Literals, Operators, Separators, Variables, Declaring a variable, Scope and lifetime of variables, Data types, Type conversion, casting

Control Statements, Arrays- One-Dimensional Arrays, Two-dimension Array, Vectors, Operators-Arithmetic, Boolean logical, Relational and Bitwise operators-Operator Precedence. Class: Fundamentals, The General Form of a Class, A Simple Declaring Objects, Assigning Object Reference Variables, Methods: Overloading Methods, Using Objects as Parameters, A Closer Look at Argument Passing, Returning Objects, Recursion Introducing Access Control, Overriding Methods, Final Variables and Methods, Final class, Finalizer Methods, Abstract Methods and Class, Visibility Control, Constructors

Unit-3	String Handling	8 hours
String:	Strings, String Constructors, String 1	ength, String
Literals, String Concatenation, data types-String conversion.		
Inheritar	nce : basic ,Types of Inheritance, Mer	mber Access,
Creating	a Multilevel Hierarchy, When Constructo	rs Are Called

Method Overriding, Why Overridden Methods?, Abstract Classes, Using final with Inheritance, Using final to Prevent Overriding . Using final to Prevent Inheritance, Packages and Interfaces

Interface	es		
Unit-4	Exception Handling	8 hours	
Exception	Exception Handling: Exceptions Exception hierarchy, Tr		
Catch, F	inally, Throw		
Unit-5	Input / Output	6 hours	
Java.io	Package-I/O Basics-Reading console	Input-Writing	
console	console output Print Writer class-Reading and Writing files-Java		
I/O class	ses, Byte Stream Classes, Character Stream		
Unit-6	Advancement & Research	4 hours	
Advance	Advancement in the course, Research methodologies, research		
discussion & publication			

Name of The	Introduction to	L	T	P	C
Course	Algorithm Analysis				
	and Design				
Course Code	BCAC2104	3	0	0	3
Prerequisite	Fundamentals of progr	amn	ning &	Data	
	structures				
Co requisite		IA	MTE	ETE	TOT
Ant requisite		20	30	50	100

Course Objectives:

To introduce students, the concepts of algorithm analysis for find out the space and time complexity of different algorithms. Different design techniques such as greedy method, divide and conquer, backtracking, dynamic programming, branch and bound are to be studied for finding the solution to the different problems. It also provides an insight into the basic concepts of NP and NP-hard problems and their relevance in research.

Course Outcomes

000	,
CO1	On completion of this subject the student shall be able to
	find out the efficiency of algorithms for different
	problems.
CO2	Students able to understand data structure concepts
CO3	Understand advance design and analysis techniques
CO4	Understand the concept of Graph Algorithms
CO5	Understand the concept of NP-Hard and NP-
	Completeness

Text Book (s)

T. Cormen, C.E. Leiserson, R.L. Rivest& C. Stein – Introduction to Algorithms – $PHI - 2^{nd}$ Edition, 2005.

Reference Book (s)

1. Knuth E. Donald, Art of Computer Programming Sorting and Searching Vol3, Second Edition, Pearson Education.

- 2. Brassard Bratley, "Fundamental of Algorithms", PHI
- 3. A V Ahoetal, "The Design and analysis of Algorithms", Pearson Education
- 4. Adam Drozdek, "Data Structures and Algorithms in C++", Thomson Asia

Unit-1	Introduction to Algorithms &	6 hours	
	Analysis		
Introduction to Algorithms & Analysis- Design of Algorithms,			
Growth of function, Complexity of Algorithms, Asymptotic			
Notations, Recurrences. Sorting: Insertion Sort, Quick Sort,			
Merge Sort			
Unit-2	Advance Data Structure	8 hours	
Advanced	Data Structure: Binary Search Trees, Red	Black Trees	
Unit-3	Advance Design and Analysis	8 hours	
	Techniques		
Advanced	Design and Analysis Techniques:	Dynamic	
programmi	ng, Greedy Algorithm		
Unit-4	Graph Algorithms	8 hours	
Graph Alg	orithms: Elementary Graph Algorithms, B	readth First	
Search, De	Search, Depth First Search, Minimum Spanning Tree, Kruskal's		
Algorithms	, Prim's Algorithms, Single Source Shorte	st Path	
TT *4 F	Special Topics in AAD	6 hours	
Unit-5	Special Topics III AAD	o nours	
	ching, Introduction of NP-Hard and NP-Co		
	ching, Introduction of NP-Hard and NP-Co		
String Mat	ching, Introduction of NP-Hard and NP-Co		
String Mat , Matrix O ₁	ching, Introduction of NP-Hard and NP-Coperations	ompleteness	
String Mat , Matrix O ₁	ching, Introduction of NP-Hard and NP-Coperations Advanced Topics in AAD	ompleteness	

Name of The Course	Cryptographic Fundamentals	L	Т	P	С
Course Code	BCAC2105	3	0	0	3
Prerequisite					
Co requisite		IA	MTE	ETE	TOT
Ant requisite		20	30	50	100

Course Objectives:

- 1. Students become familiar with cryptography and various encryption techniques used in past & present.
- 2. Learn about key management and application of cryptography such as digital signature & secure electronic transaction.

Course Outcomes

CO1	Understand basics of Cryptography
CO2	Understand theuse of Mathematics in Cryptography.
CO3	Learn modern symmetric & asymmetric encryption
	techniques.

	Learn Key management & Hash function.
CO5	Learn about Digital Signature, SET& System Security

Text Book (s)

- 1. William Stallings, "Cryptography and Network security Principles and Practices", Pearson/PHI
- 2. BehrouzForouzan, "Cryptography and Network security", Mcgraw Hill

Reference Book (s)

- 1. W. Mao, "Modern Cryptography Theory and Practice", Pearson Education.
- 2. Charles P. Pfleeger, Shari Lawrence Pfleeger Security in computing Prentice Hall of India.

Unit-1 Introduction To Cryptography 6 hours

Introduction to Cryptography - security attacks - services and mechanism - Confidentiality, Integrity & Availability (CIA) - Conventional Encryption: classical encryption techniques substitution ciphers and transposition ciphers - cryptanalysis - steganography

Unit-2 Mathematics of Cryptography 8 hours

Prime and relative prime numbers — Euler's Totient Function - modular arithmetic - Fermat's and Euler's theorem - random number generation - primality testing - Euclid's Algorithm - Chinese Remainder theorem

Unit-3Modern Encryption Techniques8 hoursBlock & Stream Cipher - Shannon theory of Confusion &Diffusion - Data Encryption Standard - Advanced EncryptionStandard - Principles of public key crypto systems - RSAalgorithm - security of RSA

Unit-4Key management & Hash8 hoursKey management – Symmetric vs Asymmetric key management- Diffle-Hellman key exchange algorithm – CertificationAuthority - Hash Function - MD5 message digest algorithm -security of hash functions – Avalanche effect - Birthday attack.

Unit-5 Digital Signature & System Security 6 hours

Digital Signatures - digital signature standards (DSS) - electronic mail security- Web Security: Secure socket layer and transport layer security - Secure electronic transaction (SET) - System Security: Intruders - Viruses and related threats - firewall.

Name of The	Computer	L	T	P	C
Course	Networking				
Course Code	BCAC2106	3	0	0	3
Prerequisite		•			
Co requisite		IA	MTE	ETE	TOT
Ant requisite		20	30	50	100

Course Objectives:

- 1. Teach fundamental concepts of networks.
- 2. Give hands on training of network installation and configuration

Course Outcomes

CO1	Understand basic of networking from the user's,			
	developer's and administrator's perspective			
CO2	Students able to Physical Layer and Data Link Layer			
CO3	Understand the concept of Network Layer			
CO4	Demonstration of Transport and Application Layer			
CO5	Students able to known network administration			
CO6	Analysis various advanced concepts in computer			
	Networking.			

Text Book (s)

- 1.A.S.Tanenbaum, "Computer Networks"; Pearson Education Asia, 4 thEd. 2003.
- 2.BehrouzA.Forouzan, "Data Communication and Networking", Tata MCGraw Hill,
- 3. Williamstallings, "Data and computer communications", Pearson education Asia,

Reference Book (s)

- 1. MCSE: Networking Essentials Study Guide -- Tata McGrawHill Publication
- 2. MCSE: Windows 2000 N/W Infrastructure design Tata McGraw Hill Publication

Unit-1	Basic Concepts, Network	6 hours
	Reference Models	

Basic Concepts: Components of data communication, distributed processing, standards and organizations. Line configuration, topology, Transmission mode, and categories of networks (LAN,WAN,PAN). Network Topologies (Bus, Star, Ring, Star Bus, Star Ring and Physical Mesh), OSI and TCP/IP Models: Layers and their functions, comparison of models

Unit-2	Physical Layer and Data Link	8 hours
	Layer	

Transmission Media: Guided and Unguided. CSMA, Ethernet, FDDI, Token Ring ,Wireless LAN. DLL: Basic functions of DLL, Circuit switching, packet switching and message switching. Flow control, error control. MAC

Unit 3. Notwork Layor. 8 hours.

Unit-3	Network Layer	8 hours			
Hub, Repeaters, bridges, gateways, routers, design issues of					
network lay	er, Routing algorithms,. Network Lay	yer Protocols:			
IPv4 – Unio	IPv4 - Unicast Routing Algorithms - Protocols - Multicasting				
Basics - IP	Basics - IPV6 Addressing - IPV6 Protocol, ARP - RARP -				
DHCP – ICMP					
IJnit_4	Transport and Application Lavor	& hours			

Transport layer: Process- to- Process delivery, Data traffic, Congestion control: Open loop, closed loop. Flow control and error Control. UDP – TCP. Application Layer: Client- Server model, DNS. DNS in internet E-mail, SMTP, FTP, HTTP, World Wide Web

Unit-5 Network Administration 6 hou

Analyzing the technical support structure(Network manager support, End-user Support), Analyzing the current Network Management, Managing Network Connections, Installing and configuring Network adapters, Installing and Configuring TCP/IP Protocol, Managing network bindings, Sharing files and Printers, Building Internet and Intranet Infrastructure, IP address scheme, assigning IP addresses

Unit-6	Advancement & Research	4 hours
Advancemen	nt in the Network, Research methodolo	gies, research
discussion &	publication	

Name of The	Computer	L	T	P	C
Course	Networking Lab				
Course Code	BCAC2109	0	0	2	1
Prerequisite					
Co requisite		IA	MTE	ETE	TOT
Ant requisite		70		30	100

EX.NO.	TITLE OF LAB EXPERIMENTS
1	Basic Networking Commands
2	Sliding Window
3	Cyclic Redundant Check
4	Routing - Shortest Path Single node
5	Broad Casting
6	Multi-Casting
7	Address Resolution Protocol
8	Implementation of TCP
9	Implementation of UDP
10	File Transfer Protocol
11	Domain name Service (DNS)
12	Learning about Configuration of sharing the files/Desktop/Printer

Name of The	Java Programming	L	T	P	С
Course	Lab				
Course Code	BCAC2108	0	0	2	1
Prerequisite				•	
Co requisite		IA	MTE	ETE	TOT
Ant requisite		70		30	100

List of Experiment:

- 1. Write a program that will print a "hello java" message on the screen.
- 2. Write a program to read a string from the command line and display the string on the screen.
- 3. Write a program to read an integer from the command line and calculate square root of that value.
- 4. Write a program to read an integer value through Scanner class and check whether it is even or odd.
- 5. Write a program to create constructor of a class and initialize values in it and later print them.
- 6. Write a java code to implement the concept of method overloading.
- 7. Write a java code to implement the concept of constructor overloading.
- 8. Write a java code to implement the concept of simple inheritance, multilevel inheritance, and hierarchical inheritance.
- 9. Write a program to show how method overriding is implemented in java.
- 10. Write a program to implement the concept of abstract classes.
- 11. Write a program to implement multiple inheritances using interface.
- 12. Write a java code to demonstrate the concept of inner classes.
- 13. Write a java code to show both the uses of "super" keyword.
- 14. Write a program to create your own package and import that package in a program.
- 15. Write a java program to show the use of various string functions like concat, indeOf.
- 16. Write programs for Exception handling using try, catch, throw and finally.
- 17 Write a program to read a single character from keyboard using Buffered Reader class and print it

Name of The	Database	L	T	P	C
Course	Management System				
	Lab				
Course Code	BCAC2107	0	0	2	1
Prerequisite					
Co requisite		IA	MTE	ETE	TOT
Ant requisite		70		30	100

LIST OF EXPERIMENTS

- 1) Implement Data Definition language Statements.
- 2) Implement Data Manipulation Statements.
- 3)Implement SELECT command with different clauses.
- 4)Implement various type of Integrity Constraints on database.

- 5)Implement SINGLE ROW functions (Character, Numeric, Date functions) and GROUP functions (avg, count, max, min, sum).
- 6)Implement various type of SET OPERATORS (Union, Intersect, Minus)
- 7)Implement the concept of grouping of Data and Subqueries.
- 8)Implement the concept of Data Control Language (DCL), Transaction Control Language(TCL).
- 9)Implement Simple and Complex View.

Value Added Experiments

10Create a Database for Banking Sector and implement various queries on it.

11 Create a Database for Customer Sale/purchase and implement various queries on it.

Name of The	Professional	L	T	P	C
Course	Communication				
	and Aptitude				
Course Code	LLL231	0	0	4	2
Prerequisite					
Co requisite		IA	MTE	ETE	TOT
Ant requisite		50		50	100

8 hours

School of Computing Sciences and Engineering

Name of The	Operating	L	T	P	C
Course	System				
Course Code	BCAS2015	3	0	0	3
Prerequisite					
Co requisite		IA	MTE	ETE	TOT
Ant requisite		20	30	50	100

Course Objectives:

- 1. Provide the fundamental principles of modern operating systems that explore design aspects of modern operating systems.
- 2. Solve problems using the above concepts.

Course Outcomes:

CO1	Understand how the operating system abstractions
	can be used in the development of application
	programs, or to build higher level abstractions
CO2	Understand how the operating system abstractions
	can be implemented
CO3	Understand the principles of concurrency and
	synchronization, and apply them to write correct
	concurrent programs/software
CO4	Understand basic resource management techniques
	(scheduling or time management, space management)
	and principles and how they can be implemented.
	These also include issues of performance and fairness
	objectives, avoiding deadlocks, as well as security and
	protection
CO5	Understand the storage management concepts

Text Book(s)

1. Operating System Concepts (7th Ed) by Silberschatz and Galvin, Wiley, 2000.

Reference Books

- 1. Operating Systems (5th Ed) Internals and Design Principles By WilliamStallings, Prentice Hall,
- 2. Modern Operating Systems by Andrew S Tanenbaum, Prentice Hall India, 1992.
- 3. Operating Systems (3rd edition) by Gary Nutt, NabenduChaki, SarmishthaNeogy, Pearson
- 4. Operating Systems Design & Implementation Andrew S. Tanenbam, AlbertS. Woodhull Pearson
- 5. Operating Systems Achyut S. Godbole Tata McGraw Hill
- 6. Operating Systems D.M.Dhardhere Tata McGraw

Unit-1	Introduction	6 hours		
Operating System and Function, Evolution of Operating System,				
System Software, OS services and Components: Multitasking,				
Multiprogramming, M	ultiprocessing, T	ime Sharing, Buffering,		
Spooling, Distributed C	OS			

	Managemen	t		
Concept of process	and threads:	Process	states,	Process
management, Critical	Section, Probl	em, Semaj	phores, (Classical
Problems in Concurr	ency, Inter l	Processes	Commu	nication,
Process Generation Pro	ocess Scheduli	no		

Process

Unit-3 Scheduling 8 hours Concept, Performance Scheduling Scheduling Criteria Algorithm, Evolution, Multiprocessor Scheduling. Deadlock: Deadlock Characterization, System Model, Prevention, Avoidance and Detection

Unit-4	Memory	8 hours
	Management	

Unit-2

Memory partitioning: Swapping, Paging, Segmentation Virtual memory: Overlays, Demand paging, Performance of Demand paging, Virtual memory concepts, replacement Page algorithms, Allocation algorithms, Example OS: Linux

Unit-5	I/O	6 hours
	Management	

I/O Devices and The Organization of I/O Function, I/O Buffering, Disk I/O, Operating System Design Issues. File System: File Concept, File Organization and Access Mechanism, File Directories, File Protection, File Sharing, Implementation Issues

Unit-6	Advancement	4 hours
	& Research	
Advance concepts in C	S, API, Research	methodologies, research

discussion & publication

Name of The	Software	L	T	P	C
Course	Engineering				
Course Code	BCAS2016	3	0	0	3
Prerequisite					
Co requisite		IA	MTE	ETE	TOT
Ant requisite		20	30	50	100

Course Objectives:

Identify, formulate, analyze, and solve problems, as well as identify the computing requirements appropriate to their solutions

Course Outcomes:

CO1	Understand basic concepts and applications of
	Software Engineering.
CO2	Work with software requirement engineering process.
CO3	Understand the concepts of software design.
CO4	Develops the basic concepts of Coding and Testing concepts.
CO5	Understand the principles of software maintenance.

Text Book (s)

- 1. Roger S Pressman," Software Engineering A Practitioner's Approach", McGraw Hill, USA, 2007.
- 2. Sommerville I, "Software Engineering", Pearson Education India, New Delhi, 2006.

Reference Books

- 1.Rajib Mall, Fundamentals of Software Engineering, PHI Publication.
- 2. K. K. Aggarwal and Yogesh Singh, Software Engineering, New Age International Publishers.
- 3. PankajJalote, Software Engineering, Wiley

Introduction to Software Engineering, Software Components, Software Characteristics, Software Crisis, Software Engineering Processes, Similarity and Differences from Conventional Engineering Processes, Software Quality Attributes. Software Development Life Cycle (SDLC) Models: Water Fall Model, Prototype Model, Spiral Model, Evolutionary Development Models, Iterative Enhancement Models, Selection of Software Process models

Unit-2	Requirement	8 hours
	Engineering	
	Process	

Requirement Engineering Process: Elicitation, Analysis, Documentation, Analyzing a problem, creating software specification document, review for correctness, consistency, and completeness, Management of User Needs, Feasibility Study, Characteristics and components SRS Document, IEEE Standards for SRS. Software Quality Assurance (SQA): Verification and Validation, SQA Plans, Software Quality Frameworks, ISO 9000 Models, SEI-CMM Model

Unit-3	Software	8 hours
	Design	

Software Design: Refining the software Specification; Software design, fundamental design concept for data, Abstraction, Modularity, Software architecture, Cohesion and Coupling, Architectural design and procedural design, Data flow oriented design, Design Structure Charts, Pseudo Codes, Flow Charts,

Coupling and Cohesion Measures, Function Oriented Design, Object Oriented Design, Top-Down and Bottom-Up Design, creating design document: Review of conformance for software requirements and quality.

Unit-4	Implementation	8 hours
	& Testing	

Coding: Relationship between design and implementation, Implementation issues and programming support environment; Coding the procedural design, Good coding style and review of correctness and readability, Structured Programming, need for structured programming, Coding standards, Coding style, Maintainability of programs, Code documentation – Code efficiency

Testing: Software testing, Testing Objectives, Levels of testing—Unit Testing, Integration Testing, System testing, Acceptance Testing, Verification Vs Validation, Testing for Functionality and Testing for Performance, Top-Down and Bottom-Up Testing, Incremental VsNonincremental testing, Structural Testing (White Box Testing), Functional Testing (Black Box Testing).

Maintenance: Software as an Evolutionary Entity, Need for Maintenance, Categories of Maintenance: Preventive, Corrective and Perfective Maintenance, Cost of Maintenance, Software Re-Engineering, Reverse Engineering. Software Configuration Management Activities, Change Control Process, Software Version Control, An Overview of CASE Tools. Estimation of Various Parameters such as Cost, Efforts, Schedule/Duration, Constructive Cost Models (COCOMO), Function Point (FP) Based Measures, Cyclomatic Complexity Measures, Software Risk Analysis and Management

& Research	
Advance concepts in Software Er	ngineering, Methodologies,
Research methodologies, research dis	cussion & publication

4 hours

Advancement

Name of The Course	.Net Technology	L	Т	P	C
Course Code	BCAS2025	3	0	0	3
Prerequisite			•		
Co requisite		IA	MTE	ETE	TOT
Ant requisite		20	30	50	100

Course Objectives:

Unit-6

 The student will gain knowledge in the concepts of the .NET framework as a whole and the technologies that constitute the Framework.

2. By building sample applications, the student will get experience and be ready for large-scale projects

Course Outcomes:

CO1	To understand the basis of .NET Framework.
CO2	Develop applications with c# using .NET Framework.
CO3	Develop applications with Visual Basic using .NET
	Framework.
CO4	Develop active server pages using .NET Framework.
CO5	Read and write data from/to files in ADO.Net .

Text Book (s)

1. Visual studio 2010 - A beginners guide - Joseph Mayo.

Reference Books

- 1. Jeffrey R. Shapiro "The Complete Reference Visual Basic .NET" Tata Mcgraw Hill (2002 Edition).
- 2. Pro ASP.NET 4 in C# 2010, MacDonald and Freeman
- 3. Visual Studio 2010 and .NET 4 Six-in-One (Wrox Programmer to Programmer)

Introducing C#, Understanding .NET, Overview of C#, Literals, Variables, Data Types, Operators, Expressions, Branching, Looping, Methods, Arrays, Strings, Structures, Enumerations, Classes, Objects, Inheritance, Polymorphism, Interfaces, Operator Overloading, Delegates, Events, Errors and Exceptions, Defining classes and class members. Assembly, Components of Assembly, Private and Shared Assembly, Garbage Collector, JIT compiler. Namespaces Collections, Comparisons and Conversions, Delegates and Events

Getting Started with .Net Framework, Exploring Visual Studio .NET, Inside a C# Program, Data Types, Statements, Arrays, Using Strings, Objects, Classes and Structs, Properties, Inheritance, Indexers, Delegates, Events, Namespaces, Generics, Collections and Data Structures, Exception Handling, Threading,

Using Streams and Files, Reflection, Assemblies, versioning, Windows Forms, Controls, Data binding to Controls, Advanced Database Programming using ADO.net, Using GDI

+, Networking, .net Remoting, Manipulating XML

Unit-3 VB.Net 8 hours

Creating Applications with Visual Basic.NET, Variables,
Constants, and Calculations, Making Decisions and Working

with Strings, Lists, Loops, Validation, Sub Procedures and Functions, Multiple Forms, Standard Modules, and Menus, Arrays, Timers, Form Controls, File Handling, Exception Handling, Working with Databases, Advanced Database Programming using ADO.net, Classes, Generics, Collections,

Inheritance, Custom Controls, Packaging & deployment, Using

Crystal Reports

Unit-4 ASP.Net 8 hours

Building a Web Application, Examples Using Standard Controls, Using HTML Controls, Validating Form Input Controls using Validation Controls, Understanding Applications and State, Applying Styles, Themes, and Skins, Creating a Layout Using Master Pages, Binding to Databases using Controls, Data Management with ADO.net, Creating a Site Navigation Hierarchy, Navigation Controls, Membership and Role Management, Login Controls, Securing Applications, Caching For Performance, Working with XML, Using Crystal Reports in Web Forms

Unit-5	DBMS	6 hours
Databases: I	ntroduction, Using SQL to work v	vith database,
retrieving a	nd manipulating data with SQL,	working with
ADO.NET, A	ADO.NET architecture, ASP.NET data	a control, data
source contro	ol, deploying the web site. Crystal re	eports. LINQ:
Operators, in	nplementations, LINQ to objects, XM	L, ADO.NET,
Query Syntax	X	

Unit-6	Adv	ance	ment & Resea	arch	4 hours
Advancemen	t in	the	Framework,	Research	methodologies,
research discussion & publication					

Name of The	Linux	L	T	P	C
Course	Administration				
Course Code	BCAS2021	3	0	0	3
Prerequisite					
Co requisite		IA	MTE	ETE	TOT
Ant requisite		20	30	50	100

Course Objectives:

- 1. To familiarize students with the Linux environment
- 2. To learn the fundamentals of shell scripting/programming
- 3. Design and implement common system automation tasks using shell scripts

Course Outcomes

CO1	Understand the history of Linux and its environment.				
	Comparing Linux and UNIX operating syste.				
	Demonstrating the installation of Linux based operating				
	system (Fedora and Ubuntu) on computer system.				
CO2	Explain and appraise the philosophy behind Open Source				
	Software and GNU Public License. Differentiating				
	between Windows based OS and Linux based OS.				
CO3	Understanding and Practicing basic Linux commands -				
	ls, cp, cat, mv, rm, chmod, ping, who, who –b, who-m.				
	Analysing security and System Integrity. Managing				
	Processes and users on Linux system. Managing				
	networking using NFS and NIS.				
CO4	Understanding boot process and analysing LILO and				

	GRUB boot methods. Analysing dual boot using Linux and Windows based operating system. Explain different aspects of the Linux file system and compare different file systems on a Linux distribution.			
CO5	Understanding and practicing vi editor and shell. Understanding and practicing shell programming constructs. Creating and executing shell scripts.			

Text Book (s):

- Richard Petersen, The Complete Reference Linux, McGraw-Hill.
- 2. LINUX kernel development by Robert Love.
- YashwantKanetkar, UNIX & Shell programming BPB
- 4. Wale Soyinka, "Linux Administration: A Beginner's Guide", McGraw Hill Companies

Reference Book (s):

- M.G.Venkateshmurthy, Introduction to UNIX & Shell Programming, Pearson Education
- 2. Ellen Siever, Stephen Figgins, Robert Love, Arnold Robbins, "Linux in a Nutshell", O' Reilly

Unit-	History and Installation of Linux	6 hours			
1					
History	History, Hardware and Environmental Considerations, Server				
Design	Design, Methods of Installation, Installing Fedora, Installing				
Ubuntu	Ubuntu Server. Dual- Booting Issues, Comparison between				
UNIX	UNIX and LINUX				
Unit-	Introduction to Linux: Basic	8 hours			
2	Terminology				

Linux – The Operating System, Open Source Software, Features of Linux, GNU, GNU Public License, Advantages of Open Source Software, Difference between Windows and Linux

Unit-	Linux Commands	8 hours
3		

General-Purpose commands, File oriented commands, directory oriented commands, Communication-oriented commands, process oriented commands. Commands like: ls, cp, cat, mv, rm, chmod, ping, Who, who –b, who-m etc. Security and system Integrity, Starting and Stopping the System, System Activity and Process Management, Users, Miscellaneous.

Unit-	Boot Methods and Linux file system	8 hours
4		

Boot Methods: The Boot Process, LILO, GRUB, Dual-Booting Linux and Windows XP/Vista, BootTime Kernel Options.Introduction to Linux file system: Architecture, aspects/features of file system, different types of file systems.

Unit-	Shell Programming	6 hours				
5						
Vi	Editor, features of different sl	nells,I/Oinshell,				
control	controlstructures,loops, subprograms.					
Shell	scripts: Creating&executingshellscriptsi	nLinux, shell				
variabl	es, purpose of shell scripts					
Unit-	Advancement & Research	4 hours				
6						
Advancement in the course, Research methodologies, research						
discuss	discussion & publication					

Name of The Course	Modelling & Animation using MAYA	L	Т	P	С
Course Code	BCAP2041	3	0	0	3
Prerequisite					
Co requisite		IA	MTE	ETE	TOT
Ant requisite		20	30	50	100

Course Objectives:

- 1. Get the Knowledge about the basics concepts of multimedia and its applications
- 2. Student will get the knowledge of its relevance with internet and its future aspects.

Course Outcomes

CO1	Student	will	gain	fundamental	knowledge	about			
001			_		inio wieage	acout			
	multimed	ia and	its app	olications					
CO2	Understar	Understand the concept of Character Setup and Rigging							
CO3	Understar	Understand the concept of Character Animation							
CO4	Understar	Understand the concept of Non-linear Animation							

Text Books:

- 3d Animation with Maya 7, Patrica Beckman and Phil Young
- 2. How to Cheat in Maya 2013: Tools and Techniques for Character Animation, Kenny Roy and Eric Luhta

Reference Books:

 Introducing Autodesk Maya 2013, DariushDerakhshani

Unit-1	Basic Modeling	10 hours				
Polygon Basics and Poly Editing Tools – The Sculpt Polygons						
Tools NURBS Moo	deling - Subdivisions	Surfaces. Advanced				
Modeling - Blend Sh	nape Modeling Pipeline	- Sneers, Blinks, and				
Smiles – The Paint, Blend Shape Weights Tool.						

Unit-2	Character Setup	10 hours
	and Rigging	

Deformers, Skeletons Clusters and Lattices – Forward and inverse Kinematics – Creating a Proper Bipedal Skeleton – Using

the Full, Body IK Skeleton – Skinning a Character					
Unit-3		Character	10 hot	ırs	
		Animation			
Preparing to Animate – The Animation Process – Pose-to-Pose					
blocking – E	blocking – Establishing Timings – Refining Animation				
Unit-4		Non-Linear	10 hot	urs	
		Animation			
Creating Pos	ses – (Creating Clips – Mod	ifying,	blending and	
Sharing Clips	s – Anir	nating with Maya's nev	w Body	IK Setup	
Unit-5			4 hour	·s	
Multimedia o	lipping	S			
Unit-6 Advancemen		ncement & Research		4 hours	
Advancement in Multimedia, Research methodologies, research					
discussion &	discussion & publication				

Name of The	Modelling &	L	T	P	C
Course	Animation using				
	MAYA Lab				
Course Code	BCAP2042	0	0	2	1
Prerequisite		•			
Co requisite		IA	MTE	ETE	TOT
Ant requisite		70		30	100

List of Experiments:

- Experiment for Animated rotation in Maya
- Experiment for Add audio to your animation
- Experiment to Create multiple animation stories with Time Editor Compositions
- Experiment for Keyframe Animation
- Working with Time Editor clips

•

Name of The	Elective-I –AI &	L	T	P	C
Course	ML				
Course Code	BCA9001	3	0	0	3
Prerequisite	Discrete Maths and Probability Theory				
Co requisite		IA	MTE	ETE	TOT
Ant requisite		20	30	50	100

Course Objectives:

Presentation of artificial intelligence as a coherent body of ideas and methods to acquaint the student with the basic programs in the field and their underlying theory. Students will explore this through problem-solving paradigms, logic and theorem proving, language and image understanding, search and control methods and learning.

Course Outcomes

CO1	Understand different types of AI agents and implement
	them using different search algorithms.
CO2	Apply the knowledge and reasoning ability in logical
	agents and planning in real world.
CO3	Understand representation and manipulation of complex
	information, knowledge and uncertainty.
CO4	Analyse different Classification Techniques.
CO5	Understand the Machine Learning and its application.

Text Book (s)

1. Elaine Rich and Kevin Knight, "Artificial Intelligence", McGraw-Hill

Reference Book (s)

- 1. Stuart Russell, Peter Norvig, "Artificial Intelligence A Modern Approach", Pearson Education
- 2. E Charniak and D McDermott, "Introduction to Artificial Intelligence", PearsonEducation
- 3. Dan W. Patterson, "Artificial Intelligence and Expert Systems", Prentice Hall of India

Unit-1	Introduction to AI	6 hours
Introduction	to Artificial Intelligence, Foundations	s and History
of Artificial	Intelligence, Applications of Artificial	Intelligence,
Intelligent A	Agents, Structure of Intelligent Agen	ts, Computer
vision, Natur	ral Language Possessing.	

Unit-2Searching8 hoursSearching for solutions, Uniformed search strategies, Informed
search strategies, Hill Climbing, Best First Search, A*Algorithm, Constraint Satisfaction, Search for games, Min-Max
and Alpha Beta Pruning.

Unit-3Knowledge Representation8 hoursPropositional logic, Theory of first order logic, Inference in Firstorder logic, Forward & Backward chaining, Clauses andResolution.

Unit-4Learning8 hoursSemantic Nets, Markov Model ,Hidden Markov Models (HMM),Bayesian Networks

Unit-5 Machine Learning 6 hours

Introduction to Machine Learning, Supervised and unsupervised learning, Decision trees, Naive Bayes models, EM algorithm, Reinforcement learning.

Unit-6 Advancement & Research 4 hours

Advancement in the Machine Learning, Research methodologies, research discussion & publication

Name of The	Elective-II (1) -Audio-	L	T	P	C
Course	Video Editing Tool &				
	Technology				

Course Code	BCAP2062	0	0	2	1
Prerequisite					
Co requisite		IA	MTE	ETE	TOT
Ant requisite		20	30	50	100

Course Objectives:

The VFX Course is a course that would help Multimedia Students understand the basic

concepts of Visual Effects and how to use Video Editing software to obtain seamless shots and create internationally standard projects. Course Outcomes

CO1	Understand the basics of Audio Video Formats
CO2	Understand the editing fundamentals
CO3	Understand the usage of Tools
CO4	Understand the presentation of products
CO5	Understand the Animation and Tools for Management

Text Books:

 Audio, Video, and Media in the Ministry, By Clarence Floyd Richmond

Reference Book:

 Multicultural Literature for Latino Bilingual Children: Their Words, Their Worlds By Ellen Riojas Clark, Belinda Bustos Flores, Howard L. Smith, Daniel Alejandro González

Unit-1		6 hours			
Digitization,	AV data from tape to compute	r hard disk.			
Understandin	g the playback deck, understar	nding signal			
processing of S-video, fire wire and composite video. Editing					
Work Station management - disk space & speed requirement.					
Broadband as	nd streaming video technology.				

Unit-2		8 hours
Using Editin	g Software – editing basics and impl	lementation

various techniques used in non-linear editing. Mastering final edit line – audio levels, colour correction, audio mixing, mixed and un-mixed versions, importing and applying compatible graphics files. Understanding compression and its affects along with various methods

Unit-3	8 hours

software/hardware tools. Overview of preproduction planning-program ideas, production models, Preproduction & Post-Production activities – Writing the program proposal, preparing a budget

Unit-4	8 hours
C	0 110 6110

Presenting the proposal: Writing the script, Director's roles & procedures, Visualization & sequencing, Shooting, Aesthetics of Editing, Role of audio & effects, Mix and composite, source material into a finished fine edit product

Unit-5		6 hours
--------	--	---------

2D animation application software interface - Default setting and user preferences - Document setup. Import and export formats - Document and timeline window feature - Tools and commands palettes - Media-selection tools and techniques Assetmanagement features.

Unit-6	Adv	ance	ement & Resea	rch		4 hours
Advancemen	t in	the	Audio-Video,	Research	n	nethodologies,
research disc	ussio	ո & լ	oublication			

Name of The Course	Elective-I (4) -Audio- Video Editing Tool &	L	Т	P	C
	Technology Lab				
Course Code	BCAP2063	0	0	2	1
Prerequisite					
Co requisite		IA	MTE	ETE	TOT
Ant requisite		70		30	100

List of Experiments:

- Experiment for audio levels, color correction, audio mixing
- Experiment forimporting and applying compatible graphics files
- Working with Broadband and streaming video
- Create a trailer
- Give a tour
- Celebrate the holidays
- Re-create a moment in history
- Create a news channel
- Create a personal narrative
- Record interviews (in person or virtually)

Name of The	Elective-I -	L	Т	P	C
Course	Advance DBMS				
Course Code	BCAS2028	3	0	0	3
Prerequisite					
Co requisite		IA	MTE	ETE	TOT
Ant requisite		20	30	50	100

Course Objectives:

To study basic concepts and major techniques in DBMS implementations. These include concepts and techniques for data storage, query processing, and transaction management. Introduce research development ability in databases through technical survey and presentation

Course Outcomes

CO1 Understand advance database management system

	techniques.
CO2	Understand in detail query processing and techniques
	involved in query optimization.
CO3	Understand the principles of concurrency control.
CO4	Understand the principles of recovery management.
CO5	Know recent developments and active research topics
	in database

Text Book (s)

- 1. Database system concepts'*, 5 th Edition –by Abraham Silberschatz, Henry Korth, S,Sudarshan, (McGraw Hill International
- 2. Data Mining: Concepts and systems'*, by Jiaweinan, MichelineKamber, (Morgan Kaufmann publishers)

Reference Books

systems
Unit-3

Distributed Databases

- 1. Database systems: "Design implementation and management", by Rob Coronel, 4th Edition, (Thomson Learning Press)
- 2. Database Management Systems by Raghu Ramkrishnan, Johannes Gehrke Second Edition, (McGraw Hill International)
- 3. Database Management System by Alexis Leaon, Mathews Leon, (leon press)
- 4. Fundamentals of Database Systems by RemezElmasri , ShamkantNavathe

Unit-1	OODBMBS & ORDBMS	6	
		hours	
OODBN	MBS & ORDBMS:		
Overvie	w of Object-Oriented concepts &characteristics,O	biects,	
	e design for ORDBMS, Comparing RDBMS, OO		
2 acao as	& ORDBMS	221.10	
Advance	e Database Management System -Conce	pts &	
Auvano	Architecture	pis &	
	Architecture:		
Spatial d	lata management, Web based systems-Overview		
of client	server architecture, Databases and web architectu	ıre,	
N-tier,A	architecture, Business logic – SOAP,		
Multime	dia databases , Mobile		
databas	e		
Unit-2	Parallel databases and Distributed	8	
	Databases	hours	
Parallel databases: Introduction, Parallel database architecture			
, I/O parallelism , Inter-query and Intra-query parallelism, Inter-			
operational and Intra-operational parallelism, Design of parallel			

				hours
tion	DDDMC	arabitaaturas	Цатадараа	ac and

Introduction , DDBMS architectures , Homogeneous and Heterogeneous , Databases , Distributed data storage , Distributed transactions , Commit protocols , Availability , Concurrency control & recovery in distributed databases , Directory systems

Unit-4	Knowledge base Systems and Data	8
	Warehousing	hours

Knowledge base Systems: Integration of expert in database, application & object database overview Data Warehousing: Introduction to Data warehousing, Architecture, Dimensional data modeling- star, snowflake schemas, fact constellation, OLAP and data cubes, Operations on cubes, Data preprocessing -need for pre-processing, data cleaning, data integration and transformation, data reduction

Unit-5	Data Mining	6
		hours

Introduction to data mining , Introduction to machine learning , Descriptive and predictive data mining , outlier analysis, clustering – k means algorithm , Classification - decision tree, association, rules - apriori algorithm , Introduction to text mining, Bayesian classifiers

Unit-6	Advancement & Research	4
		hours

Advancement in the course, Research methodologies, research discussion & publication

Name of The	iOS, Android APP	L	T	P	C
Course	Development Lab				
Course Code	BCA9003	0	0	2	1
Prerequisite		•			
Co requisite		IA	MTE	ETE	TOT
Ant requisite		70		30	100

Course Objectives:

- 1. To understand the design aspects of operating system.
- 2. To study the process management concepts & Techniques.
- 3. To study the storage management concepts.

Course Outcomes

CO1	To use of an operating system to develop software
CO2	To write software systems based on multiple
	cooperating processes or threads
CO3	To implement file organization techniques
CO4	To implement file allocation strategies
CO5	To implement process scheduling &
	synchronization algorithms

Text Book (s)

Reference Book (s)

List of Experiment:

- Create a basic Android application to display a string "Welcome to Android" using strings.xml and Explore the directory structure and components of android application.
- 2. Write a program to create a birthday card displaying greetings using Relative layout and TextViews.
- 3. Write an Android app that takes user's name as input in an EditText box and on pressing button "OK" will Toast message Welcome <user name>.
- 4. Create an Android program for a simple Calculator app using UI controls and show arithmetic operations +, -, /,
 * and mod operations on two operands. Perform input validation and appropriate processing.
- Write an Android App to display a menu of fast-food items and accepts users order, accordingly generate a Bill. Use Checkbox, Textview, Toast, and button.
- Write a program using radio button that will select any one of option from movie type(comedy, horror, action, thriller) and toast the message on submit button is clicked.
- 7. Write an Android app for selecting <item> using spinner.
- 8. Write an Android app For Registration Form using Explicit Intent.
- Write a program that accepts user's orders for beverages (tea/coffee) and snacks (chips/cookies) and sends order confirmation email to the user with amount payable.
- Write a program to start another activity using explicit intent to enter user's information and process response from the activity started in main activity. Use StartActivityForResult.

Value Added Experiments

- 11. Write an android program for sending SMS using Implicit Intents
- 12. Write an android app using content provide to access the database.
- **13.** Write an app to create a customized listview of contacts like whatsapp list.

Name of The	.Net technology Lab	L	T	P	C
Course	(PBL)				
Course Code	BCAS2026	0	0	2	1
Prerequisite					
Co requisite		IA	MTE	ETE	TOT
Ant requisite		70		30	100

List of Experiments

- 1. Write a program in C# to add, subtract, multiply, and divide two numbers.
- 2. Write a program in C# to compute the area of a circle.
- 3. Write a program in C# to compute the sum of first 100 numbers.
- 4. Write a program in C# that uses Building class and displays the following output:
- 5. house has:
- 3 floors
- 4 occupants
 - 6. 2500 total area
 - 7. 625 area per person
 - 8. Write a program in C# to handle divide- by-Zero exception.
 - 9. Write a program in Visual Basic to compute the factorial of a number.
 - 10. Write a program in Visual Basic to find the roots of quadratic equation.
 - 11. Write a program in Visual Basic to convert temperature from Fahrenheit to Celsius and vice versa.
 - 12. Write a program in Visual Basic to compute the area of triangle and rectangle.
 - 13. Value Addition Experiments
 - 14. Write a program to display holiday in calendar using ASP.Net.
 - 15. Write a program to display the phone number of an author using database.

Name of The	Linux	L	T	P	C
Course	Administration Lab				
Course Code	BCAS2022	0	0	2	1
Prerequisite					
Co requisite		IA	MTE	ETE	TOT
Ant requisite		70		30	100

S.No	Title of the lab experiment	
1	Study of any Open source software	
2	Process for installing ubuntu open source software	
3	Study of general purpose utilities commands.	

4	Study of user & session management commands.
5	Study of file system navigation commands, text
3	
	processing tools, communication commands.
6	Study of VI editor.
7	Study of Shell Script
8	Execute C & C++ programs in Linux.
9	Installation of Linux operating system.
	a. Partitioning drives
	b. Configuring boot loader (GRUB/LILO)
	c. Network configuration
	d. Setting time zones
	e. Creating password and user accounts
	f. Shutting down
10	Do the following changes in Grub file
	a. Write the path where the grub file is located.
	b. Change the timeout and title of the system.
11	Bash shell
	a.buit-in commands
	b.arithmetic expressions
	c.functions

Name of The Course	Big Data Computing	L	Т	P	С
Course Code	BCAS3006	3	0	0	3
Prerequisite	Data Structure & Algorithms, Computer				
	Architecture, Operating	Syst	em, D	atabas	e
	Management Systems				
Co requisite		IA	MTE	ETE	TOT
Ant requisite		20	30	50	100

Course Objectives:

- 1. To provide an overview of an exciting growing field of big data analytics
- 2. To understand the enabling technologies for Big Data
- 3. To learn the tools required to manage and analyze big data like Hadoop, NoSqlMapReduce.
- 4. To study the Big Data applications using Machine learning algorithms
- 5. To learn the Machine learning libraries to apply Big Data applications
- 6. To study the recent trends and tools on Big data applications

Course Outcomes

CO1	Understanding the fundamentals of Big data analytics
CO2	Applying enabling technologies for Big Data analytics
CO3	Implementing the Hadoop, NoSql and MapReduce
CO4	Applying the Machine learning algorithms on Big data applications
CO5	Applying the Spark Machine Learning libraries on Big data applications
CO6	Reading the recent research papers and applying machine learning algorithms

Text Books

- Bart Baesens, Analytics in a Big Data World: The Essential Guide to Data Science and its Applications, Wiley, 2014
- 2. NPTEL: Big Data Computing, By Prof. Rajiv Misra https://nptel.ac.in/courses/106/104/106104189

Reference Books

- 1. Dirk Deroos et al., Hadoop for Dummies, Dreamtech Press, 2014.
- 2. Chuck Lam, Hadoop in Action, December, 2010.

- 3. Leskovec, Rajaraman, Ullman, Mining of Massive Datasets, Cambridge University Press.
- 4. I.H. Witten and E. Frank, Data Mining: Practical Machine learning tools and techniques.
- 5. Erik Brynjolfsson et al., The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies, W. W. Norton & Company, 2014.

Unit-1	Introduction to Big Data	6 hours
Introduc	tion to Big Data: Why Big Data and Where d	id it come
from?,C	haracteristics of Big DataVolume, Variety,	Velocity,
Veracity	v, Valence, Value, Challenges and application	ns of Big
Data		

Unit-2 Enabling Technologies 8 hours Introduction to Enabling Technologies for Big Data,Introduction to Big Data Stack,Introductiontosome Big Data distribution packages

Unit-3	Big Data Platforms	8 hours
Introduc	tion to Big Data Platforms, Overview of Apac	che Spark,
HDFS,	YARN,IntroductiontoMapReduce,N	IapReduce
Program	ming Model with Spark, MapReduce Exami	ole: Word

Programming Model with Spark, MapReduce Example: Word Count, PageRank etc.

Unit-4 Big Data Applications				8 hours			
Introduction to Big Data Applications						(Machine	
Learning	g),Ove	rview	0	f 1	Big	Data	Machine
Learning, Mahout Introduction, Big Data Machine				learning			
Algorithms in Mahout- k-means, Naïve Bayes etc.							
Unit-5 Big data Machine learning				6 hours			

Introduc	tion of Big	data Machin	ne le	arning	with Spark	,Bi	g Data
Machine	e Learning	Algorithms	in	SparkIn	troduction	to	Spark
MLlib,I	ntroduction	to Deep Lear	rning	g for Bi	g Data		

Unit-6	4 hours					
Advance	Advancement in the course, Research methodologies, research					
discussion	on & publication					

Name of The	Computer	L	T	P	C
Course	Graphics				
Course Code	BCAS3003	3	0	0	3
Prerequisite					
Co requisite		IA	MTE	ETE	TOT
Ant requisite		20	30	50	100

Course Objectives:

- 1. To introduce students to the basics of computer graphics.
- 2. Learn how concepts of computer graphics are useful. Course Outcomes

CO1	Apply mathematics, physics and computer programming				
	to computer graphics applications and write programmes				
	for various output primitives.				
CO2	Summarize and critically review the routines in computer				
	graphics packages like Paint Brush.				
CO3	Compare various object representation systems in				
	Graphics systems.				
CO4	Be immediately ready to contribute in a significant way				
	to the computer graphics industry.				
CO5	Demonstrate the knowledge, technical skills and personal				
	discipline to be successful in a specialized, computer-				
	based graphics field and develop understanding on				
	various kinds of research, objectives of doing research,				
	research process, and research designs				

Text Books

Unit-6

1. D. Hearn, P. Baker, "Computer Graphics - C Version", 2nd Edition, Pearson Education, 1997

Reference Books

- Heam Donald, Pauline Baker M: "Computer Graphics", PHI 2nd Edn. 1995.
- 2. Harrington S: "Computer Graphics A Programming Approach", 2nd Edn. McGrawHill.
- 3. ShaliniGovil-Pai, Principles of Computer Graphics, Springer, 2004.

Unit-1	Overview of Graphics Systems	6 hours				
Video display devices, Raster-Scan System, Random-Scan,						
Systems. Rando	om-Scan Systems Graphics monito	rs and work				
stations. Input d	evices: Hard copy devices. Graphics	software				
Unit-2	Output primitives	8 hours				
Line drawing a	algorithms circle generation algorit	hms. Ellipse				
Generating, Alg	orithm. Pixel Addressing. Filled-Are	ea Primitives.				
Fill Area Functi	on, Cell Array, Character, Generation	n				
Unit-3	Attributes of Output Primitives	8 hours				
Line Attributes.	Curve Attributes, Color and Gray-	Scale levels.				
Area-Fill Attrib	outes, Character Attributes. Bundle	ed attributes.				
Inquiry function	ns. Two-dimensional geometric tran	nsformations:				
Basic transform	ations					
Unit-4	Transformation	8 hours				
Homogenous	coordinates, composite transforma	tions, other				
transformations	. Affine transformations, tr	ansformation				
functions, Roste	er methods for transformations					
Unit-5	Two-dimensional viewing	6 hours				
The viewing pip	The viewing pipeline, viewing transformation, viewingfunctions.					
Line clipping, Cohen Sutherland line clipping, Liang Barsky line						
clipping Polygon clipping: Sutherland-Hodgman polygon						
clipping, WeilerAmerton polygon clipping						

Advancement & Research

Meaning of Research, Objectives of Research, Motivations in Research, Types of Research, Research Approaches, Basic idea Publications.

Name of The	E-Commerce	L	Т	P	C
Course					
Course Code	BCAS3004	3	0	0	3
Prerequisite					
Co requisite		IA	MTE	ETE	TOT
Ant requisite		20	30	50	100

Course Objectives:

To provide students with a good understanding in planning, design, development, deployment and management of ecommerce systems and applications

Course Outcomes

CO1	Understand the basic concepts and technologies used in
	the field of MIS and e-commerce.
CO2	Policy and regulatory issues in E-commerce.
CO3	Implement information systems and e- commerce
	website.
CO4	Handle security threats in electronic commerce.
CO5	Use the basic concepts and technologies used in mobile
	Commerce

Text Book (s):

 Ravi Kalakota and Andrew B Whinston, Frontiers of Electronic Commerce, Add. Wesley

Reference Book (s):

and E-Commerce.

Unit-3

4 hours

- 1. Pete Loshin, Paul H Murphy, Electronic Commerce, II Edition, Jaico Publishers, 1996.
- **2.** David Whiteley, E-Commerce: Strategy, Technologies and Applications, McGraw Hill, 2000.
- **3.** Daniel Minoli & Emma Minoli Web Commerce Technology Tata McGraw Hill, 2002.

Unit-1	Introduction	6 hours					
Infrastructure of	Infrastructure of Electronic Commerce - Networks - Packet						
Switched Networ	ks - TCP/IP - Internet Prot	ocol – Domain					
Name Services –	Web Service Protocols - Inter-	net Applications					
– Utility Program	ns – Markup Languages – W	Veb Clients and					
Servers – Internet	s and Extranets – Virtual Privat	e Network.					
Unit-2	Core Technology	8 hours					
Electronic Commerce Models - Shopping Cart Technology -							
Data Mining – In	Data Mining – Intelligent Agents – Internet Marketing – XML						

Electronic Payment

8 hours

	C4			
	System			
Real World Payr	ment Systems - Electronic F	und Transfer –		
Digital Payment -	- Internet Payment Systems – I	Micro Payments		
- Credit Card Trai	nsactions			
Unit-4	Security and Threats	8 hours		
Threats to Netwo	ork Security - Public Key	Cryptography –		
Network Security	Solutions –Firewalls			
Unit-5	Inter/Intra Organizational	6 hours		
	Electronic Commerce			
EDI – EDI Application in Business – Legal, Security and Privacy				
Issues – EDI and Electronic Commerce – Standards– Internal IS				

Name of The	Software Project	L	T	P	C
Course	Management				
Course Code	BCAS3006	3	0	0	3
Prerequisite					
Co requisite		IA	MTE	ETE	TOT
Ant requisite		20	30	50	100

Course Objectives:

Course Outcomes

CO1	Define and identify the importance of software project			
	management.			
CO2	Describe the software project management activities			
CO3	Compare and differentiate organization structures and			
	project structures.			
CO4	Implement a project to manage project schedule,			
	expenses and resources with the application of suitable			
	project management tools.			
CO5	Planning and tracking and oversight in the			
	implementation of the software project management			
	process			

Text Book (s)

 Clifford F. Gray, Erik W. Larson, "Project Management: The Managerial Process with MS", McGraw Hill

Reference Book (s)

- 1. M. Cotterell, Software Project Management, Tata McGraw-Hill Publication.
- 2. 2. Royce, Software Project Management, Pearson Education
- 3. Kieron Conway, Software Project Management, Dreamtech Press

4. 4. S. A. Kelkar, Software Project Management, PHI Publication.

ru	oncation.				
Unit-1	INTRODUCTION TO	6 hours			
	SOFTWARE PROJECT				
	MANAGEMENT				
Project Def	inition – Contract Management – Activi	ties Covered			
By Software	eProjectManagement - Overview Of Pro	oject Planning			
- Stepwise	Project Planning				
Unit-2	PROJECT EVALUATION	8 hours			
Strategic A	ssessment - Technical Assessment -	Cost Benefit			
Analysis -	Cash Flow Forecasting - Cost Bene-	fit Evaluation			
Techniques	- Risk Evaluation				
Unit-3	ACTIVITY PLANNING	8 hours			
Objectives	- Project Schedule - Sequencing and	Scheduling			
Activities –	Network Planning Models – Forward	l Pass –			
Backward F	Pass – Activity Float – Shortening Project	ct Duration –			
Activity on	Arrow Networks - Risk Management -	Nature Of			
Risk – Type	es Of Risk – Managing Risk – Hazard Id	lentification –			
Hazard Ana	llysis – Risk Planning And Control				
Unit-4	MONITORING AND CONTROL				
	ramework - Collecting The Data -				
_	Cost Monitoring –Earned Value	_			
Monitoring	Monitoring - Getting Project Back To Target - Change Control				
	g Contracts - Introduction - Types (
Stages In Contract Placement - Typical Terms Of A Contract -					
Contract Management – Acceptance					
Unit-5	MANAGING PEOPLE AND	6hours			
	ORGANIZING TEAMS				
	e	Organizational			
	A Background – Selecting The Right P				
	ruction In The Best Methods - Moti				
Oldman - Hackman Job Characteristics Model - Working In					
Groups – Becoming A Team –Decision Making – Leadership –					
Organizational Structures - Stress -Health And Safety - Case					

Advancement & Research

Advancement in the course, Research methodologies, research

4 hours

Studies

Unit-6

discussion & publication

Name of The	Elective-II-	L	T	P	C
Course	Network Security				
Course Code	BCAS3010	3	0	0	3
Prerequisite					
Co requisite		IA	MTE	ETE	TOT
Ant requisite		20	30	50	100

Course Objectives:

- Required for the protection of data against accidental or intentional destruction, disclosure or modification.
- 2. Network security refers to the technological safeguards and managerial procedure which can ensure that organizational assets and individual privacy are protected over the network.

Course Outcomes

CO1	Describe the Network Security.
CO2	Understand different types of security threats.
CO3	Discuss the Security Mechanisms.
CO4	List of Access Control
CO5	System Security
CO6	Network Security Evaluation research

Text Books

 Stallings, "Cryptography & Network Security, Principles & Practice", 3rd Edition, Prentice Hall, 2002.

Reference Books

- 1. Bruce, Schneier, "Applied Cryptography", 2nd Edition, Toha Wiley & Sons, 1996.
- 2. Man Young Rhee, "Internet Security", Wiley, 2003.
- 3. Pfleeger&Pfleeger, "Security in Computing", 3rd Edition, Pearson Education, 2003.

Unit-1	Introduction: Basic Terminology	6 hours				
Attacks, Ser	Encryption,					
Classical and	Classical and Modern Techniques, Encryption Algorithms,					
Confidentiali	ty					
Unit-2	Public Key Encryption	8 hours				
RSA, Elliptic	RSA, Elliptic Curve Cryptography, Number Theory Concepts					
Unit-3	8 hours					
Hash Funct	Hash Functions, Digest Functions, Digital Signatures,					
Authenticatio	n Protocols					
Unit-4	Network Security Practice	8 hours				
Authenticatio	Security, IP					
Security, Web Security						
Unit-5	System Security	6 hours				

Intruders, Viruses, Worms, Firewalls Design Principles, Trusted				
Systems				
Unit-6	Advancement & Research	4 hours		
Advancement in the course, Research methodologies, research				
discussion & publication				

Name of The	Computer	L	T	P	C	
Course	Graphics Lab					
Course Code	BCAS3005	0	0	2	1	
Prerequisite	quisite					
Co requisite		IA	MTE	ETE	TOT	
Ant requisite		70		30	100	

List of Experiments

 •			
Study of basic graphics functions defined in "graphics.h"			
To implement DDA(Digital Differential Algorithm) for line			
drawing			
To implement Bresenham's algorithm for line drawing			
To implement Bresenham's algorithm for circle drawing			
To implement Midpoint algorithm for circle drawing			
To implement Midpoint algorithm for ellipse drawing			
To perform 2D Rotation Transformation			
To perform 2-D Translation Transformation			
To perform 2-D Scaling Transformation			
To perform 2-D Reflection Transformation			
To perform a composite Transformation using 2D			
Transformation			
To implement Cohen-Sutherland 2D Line clipping			
To implement Sutherland Hodgeman Polygon clipping			
algorithm			
To implement window-viewport mapping			
Value Addition Experiments			
Designing simple animation using transformations			

Name of The	Elective II lab-	L	T	P	C
Course	Network Security				
	Lab				
Course Code	BCAS3011	0	0	2	1
Prerequisite					
Co requisite		IA	MTE	ETE	TOT
Ant requisite		70		30	100

LIST OF EXPERIMENTS:

- 1. Study of Network Security fundamentals Ethical Hacking, Social Engineering practices.
- 2. Implement the following SUBSTITUTION TECHNIQUES
- a) Caesar Cipher b) Playfair Cipher
- c) Hill Cipher

- 3. Implement the Rail fence row & Column Transposition Techniques
- 4. Implement the DES Algorithm
- 5. Implement the RSA Algorithm
- 6. Implement the Diffiee-Hellman Algorithm
- 7. Implement the MD5 Algorithm e) SHA-1
- 8. Implement the Signature Scheme Digital Signature Standard
- 9. Study and Implement Various IP Security Techniques
- 10. Study and Implement Various Web Security Techniques
- 11. Implement system firewall for network security
- 12. Study of system attacks and prevention methods
- 13. Various Network security evaluation research (Content Beyond the Sylabus)