

COURSE BOOK - 2021 Volume-05

Curriculum and syllabus 2021-2024

University Polytechnic
Program: Diploma in Electronics &
Communication Engineering

Diploma in Electronics & Communication Engineering

Vision: To be recognized as a center of excellence in Electronics and Communication Engineering for the global education and innovation to provide committed Diplomas who can apply knowledge and skills for the benefit of society.

Mission:

- To provide quality education by providing state of the art facility and solutions for global challenges.
- To provide framework for promoting the industry- institution collaboration and empower the students in interdisciplinary field.
- To transform students into socially responsible, ethical and technically proficient with innovative skills and usage of modern tools.
- To make the students corporate ready with spirit and necessary interpersonal skills

Program Educational Objectives

- Graduates will excel in their career by acquiring knowledge in the field of Electronics and Communication Engineering with the usage of modern tools and emerging technologies.
- Graduates will have the capability to analyze real life problems of the society and produce innovative solutions.
- Graduates exhibit professionalism, ethical attitude, communication skills and team work in core engineering through professional development and lifelong learning.

Program Specific Objectives

- PSO1: The ability to Apply the fundamental knowledge of electronics in various domain of analog & digital system with safety and environmental aspects.
- PSO2: Demonstrate and test electronics and communication systems for applications with real time constraints.

Program Outcomes

The students of Diploma in Electronics & Communication Engineering will have the ability

- Basic knowledge: An ability to apply knowledge of basic mathematics, science and engineering to solve the engineering problems.
- Discipline knowledge: An ability to apply discipline specific knowledge to solve core and/or applied engineering problems.

- Experiments and practice: An ability to plan and perform experiments and practices and to use the results to solve engineering problems.
- Engineering Tools: Apply appropriate technologies and tools with an understanding of the limitations.
- The engineer and society: Demonstrate knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to engineering practice.
- Environment and sustainability: Understand the impact of the engineering solutions in societal and environmental contexts, and demonstrate the knowledge and need for sustainable development.
- Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- Individual and team work: Function effectively as an individual, and as a member or leader in diverse/multidisciplinary teams.
- Communication: An ability to communicate effectively.
- Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the context of technological changes.

Curriculum

		Semester 1								
Sl.No.	Course Code Name of the Course					Assessment Pattern				
		A DDY YED DYWGYGG Y		T	P	C	IA	MTE	ET	
1	PHYE1001	APPLIED PHYSICS-I	3	2	0	4	20	50	100	
2	MATD1002	APPLIED MATHEMATICS-I	4	0	0	4	20	50	100	
3	SLPC1003	PROFESSIONAL COMUNICATION-I	2	0	0	2	20	50	100	
4	DPCS1004	COMPUTER FUNDAMENTALS	3	0	0	3	20	50	100	
5	CHEM1005	BASIC CHEMISTRY	3	2	0	4	20	50	100	
6	PHYE1006	APPLIED PHYSICS-I LAB	0	0	2	1	50	-	50	
7	SLPC1007	PROFESSIONAL COMUNICATION-I LAB	0	0	4	2	50	-	50	
8	DPCS1008	COMPUTER FUNDAMENTALS LAB	0	0	2	1	50	-	50	
9	CHEM1009	BASIC CHEMISTRY LAB	0	0	4	2	50	-	50	
		Total Credits	15	4	12	23				
		Semester II								
Sl No	Course Code	Name of the Course				r		ssessme Pattern	T	
			L	T	P	C	IA	MTE	ETI	
1	PHYE1010	APPLIED PHYSICS-II	3	2	0	4	20	50	100	
2	MATD1011	APPLIED MATHEMATICS-II	4	2	0	5	20	50	100	
3	SLPC1012	PROFESSIONAL COMUNICATION-II	3	0	0	3	20	50	100	
4	DPEE1013	BASIC ELECTRICAL ENGG.	3	2	0	4	20	50	100	
5	DPCO1014	ELECTRONIC COMPONETS & DEVICES	3	0	0	3	20	50	100	
6	PHYE1015	APPLIED PHYSICS-II LAB	0	0	2	1	50		50	
7	SLPC1016	PROFESSIONAL COMUNICATION-II LAB	0	0	4	2	50	-	50	
8	DPME1017	WORKSHOP PRACTICE	0	0	6	3	50	-	50	
9	DPEE1018	BASIC ELECTRICAL ENGG.LAB	0	0	2	1	50	-	50	
10	DPCO1019	ELECTRONIC COMPONETS & DEVICES LAB	0	0	2	1	50	-	50	
		TOTAL CREDITS	16	6	16	27				
		Semester III								
							A	ssessme	nt	
Sl No	Course Code	Name of the Course					Pattern			
			L	T	P	C	IA	MTE	ETI	
1	MATD2001	APPLIED MATHEMATICS-III	3	2	0	4	20	50	100	
2	DPCO2001	NETWORK FILTERS & TRANSMISSION LINES	3	0	0	3	20	50	100	
3	DPCO2002	ELECTRONIC DEVICES AND CIRCUITS	3	0	0	3	20	50	100	
4	DPCO2003	PRINCIPLES OF DIGITAL ELECTRONICS	3	0	0	3	20	50	100	
5	DPCO2004	TECHNICAL DRAWING	2	0	0	2	20	50	100	
6	DPME2018	ENGINEERING MECHANICS & MATERIAL	3	0	0	3	20	50	100	
7	DPCO2005	NETWORK FILTERS & TRANSMISSION LINES LAB	0	0	2	1	50	-	50	
8	DPCO2006	ELECTRONIC DEVICES AND CIRCUITS LAB	0	0	2	1	50	-	50	
9	DPCO2007	PRINCIPLES OF DIGITAL ELECTRONICS LAB	0	0	2	1	50	-	50	
10	EEDM2001	ENVIRONMENT EDUCATION & DISASTER MANAGEMENT	2	0	0	2	20	30	100	
		Total Credits	19	2	6	23		İ		

		Semester IV							
Sl No	Course Code	Name of the Course			1	1	A	Assessme Pattern	
			L	T	P	C	IA	MTE	ETE
1	DPCO2008	PRINCIPLE OF COMMUNICATION ENGINEERING	3	0	0	3	20	50	100
2	DPCO2009	ANTENNA, MICROWAVE & RADAR ENGG.	3	0	0	3	20	50	100
3	DPCO2010	MICROPROCESSOR AND ITS APPLICATIONS	3	0	0	3	20	50	100
4	DPCS2015	COMPUTER PROGRAMMING AND APPLICATIONS	3	0	0	3	20	50	100
5	DPCO2011	ELECTRONIC INSTRUMENTS AND MEASUREMENT.	3	0	0	3	20	50	100
6	DPCO2012	PRINCIPLE OF COMMUNICATION ENGINEERING LAB	0	0	2	1	50		50
7	DPCO2013	ANTENNA, MICROWAVE & RADAR ENGG. LAB	0	0	2	1	50	-	50
8	DPCO2018	MICROPROCESSOR AND EMBEDDED SYSTEM LAB	0	0	2	1	50	-	50
9	DPCS2016	COMPUTER PROGRAMMING AND APPLICATIONS LAB	0	0	4	2	50	-	50
10	DPCO9001	DISRUPTIVE TECHNOLOGY	0	0	2	1	50		50
11	DPCO2019	ELECTRONIC INSTRUMENTS AND MEASUREMENT LAB	0	0	2	1	50	-	50
		Total Credits	15	0	14	22			
		Semester V							
							Assessment		
Sl No	Course Code	Name of the Course		7	-	-	T.4	Pattern	
		INDUSTRIAL MANAGEMENT AND	L	T	P	C	IA	MTE	ETE
1	IMED3001	ENTERPRENURSHIP DEVELOPMENT	3	0	0	3	20	50 50	100
2	DPCO3002	MODERN COMMUNICATION SYSTEM INDUSTRIAL ELECTRONICS &	3	U	U	3	20	50	100
3	DPCO3003	TRANSDUCERS	3	0	0	3	20	50	100
5	DPCO3004 DPCO3005	MICROELECTRONICS-I(ELECTIVE-I) BIO-MEDICAL ELECTRONICS (ELECTIVE SUBJECT-II)	3	0	0	3	20	50	100
6	DPCO3007	MODERN COMMUNICATION SYSTEM LAB	0	0	2	1	50		50
7	DPCO3008	INDUSTRIAL ELECTRONICS & TRANSDUCERS LAB	0	0	2	1	50	-	50
8	PDSS3008	PERSONALITY DEVELOPMENT & SOFT SKILLS	0	0	4	2	50	-	50
9	DPCO9998	PROJECT-I	0	0	4	2	50	-	50
		Total Credits	12	0	12	18			
Sl No	Course Code	Semester VI Name of the Course				A	Assessme Pattern		
211.0 Course con		Think of the Course		T	P	C	IA	MTE	ETE
1	DPCO3009	FIELD VISIT AND PRESENTATION	0	0	0	2	50	-	50
2	DPCO9999	PROJECT-II	0	0	0	16	50	-	50
4									

List of Electives

Basket-1

Sl No		Course Code	Name of the Electives				
SI NO	Elective-1	Course Code			T	P	C
1		DPCO3004	MICROELECTRONICS	3	0	0	3

Basket-2

Sl No		Course Code Name of the Elective								
31 110	Elective-2	Course Coue	Name of the Elective		T	P	C			
1		DPCO3005	BIOMEDICAL ELECTRONICS	3	0	0	3			

Detailed Syllabus

Name of The Course	ELECTRONICS COMPONENTS & DEVICES						
Course Code	DPCO1014						
Prerequisite							
Co-requisite							
Anti-requisite							
		L	T	P	C		
		3	0	0	3		

Course Objectives

- 1. Understand the working of diodes, transistors.
- 2. Understand the application of different electronic devices and simple circuits.
- 3. To expose students to the function and application of the diodes, bipolar junction and field effect transistors in electronic circuits.

Course Outcomes

Course	Outcomes
	Explain the basic electrical
CO1	components like resistors,
COI	capacitors, inductors and diodes
	with its applications.
CO2	Design the rectifier, clipper and
COZ	clamper circuits using diodes.
	Illustrate the various special
CO ₃	purpose diodes such as zener,
	schottky, varactor and photo diode.
CO4	Explain the BJT and its analysis as
CO4	CE,CC and CB amplifier.
COF	Develop the basic understanding of
CO5	FET, MOSFET.

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Exam	Exam	
	(MTE)	(ETE)	
20	30	50	100

Course Content:

Unit I: INTRODUCTION TO ELECTRONICS 9 Hours

- 1.1. Application of Electronics in different fields.
- 1.2. Brief introduction to active components and devices.
- 1.3. Introduction to passive components:
 Resister- Working characteristics/properties,
 Resistors- Carbon film, metal-film, carbon
 composition, wire wound and variable type
 (presets and potentiometers) constructional
 details, characteristics
- 1.4. Capacitors- Working characteristics/properties, Capacitor's polyester, Metalized polyester, ceramic paper mica.
- 1.5. Inductors, Transformers and RF coils-Working characteristics/properties Methods of manufacture of inductors, RF coils and small power and AF transformer and their testing. Properties of cores.

Unit II: VOLTAGE AND CURRENT SOURCES 8 Hours

Concept of constant voltage sources, symbol and graphical representation, characteristics of ideal and practical voltage sources.

Concept of constant current source, symbol and graphical representation, characteristics of ideal and practical current sources.

Conversion of voltage source into a current source and vice-versa

Concept of floating and grounded D.C.

supplies.

Unit III: SEMICONDUCTOR DIODE 10 Hours

P-N junction diode, Mechanism of current flow in P-N junction drift and diffusion currents, depletion layer, potential barrier, P-N junction diode characteristics, Zener& avalanche breakdown, concept of junction capacitance in forward & reverse bias conditions.

Semiconductor diode characteristics, dynamic resistance & their calculation from diode characteristics, dynamic resistance of diode in terms of diode current.

Diode (P-N junction) as rectifier, half wave rectifier full wave rectifier including bridge rectifier, Different types of diodes, characteristics and typical application of power diodes, Zener diodes, varactor diodes, point contact diodes, tunnel diodes, and LED's and photo diodes.

Important specifications of rectifier diode and Zener diode.

Unit IV: INTRODUCTION TO BIPOLAR TRANSISTOR AND ITS BIASING 6 Hours

Concept to bipolar transistor as a two junction three terminal device having two kinds of charge carriers, PNP and NPN transistors, their symbols and mechanisms of current flow,

CB, CE and CC configurations.

- (a) Common base configuration (CB): inputs and output characteristics, determination of transistor parameters (input and output) dynamic resistance, current amplification factor.
- (b) Common emitter configuration: current

relations in CE configuration, collector current in terms of base current and leakage current (ICEO), relationship between the leakage current in CB and CE configuration, input and output characteristics, determination of dynamic input and output resistance and current amplification factor B from the characteristics.

(C) Common collector configuration: Expression for emitter current in terms of base current and leakage current in CC configuration.

Comparison of CB and CE configuration with regards to dynamic input and output resistance, current gain and leakage current performance of CE configuration for low frequency voltage amplification. Typical application of CB configuration in amplification.

Transistor as an amplifier in CE configuration.

- (a) DC load line, Its equation and drawing it on collector characteristics.
- (b) Determination of small signal voltage and current gain of a basic transistor amplifier using CE output characteristic and DC load line, Concept of power gain as a product of voltage gain and current gain.

Different transistor biasing circuits for fixing the operating points, effect of temperature on operating point. Need and method for stabilization of operating point. Effect of fixing operating point in cut-off or saturation region on performance of amplifier.

Calculation of operating point for different biasing circuits, use of Thevenin's theorem in analyzing potential divider biasing circuit. Simple design problems on potential divider biasing circuit.

Unit V: FIELD EFFECT TRANSISTOR (FET, MOSFET) 8 Hours

Construction, operation, characteristics and Biasing of Junction FET.

Construction, operation, Characteristics and Biasing of MOSFET in both depletion and enhancement modes.

Suggested Reading

- 1. Thomas L. Floyd Electronic Devices, 2-nd Ed, Merrill Publ.Co, Columbus-Ohio, 1988
- 2. Albert Paul Melvino Electronic Principles, Tata McGraw-Hill, New Delphi, 1982
- 3. Stephan Santeria, Bruce Wedlock Electronic Circuits and Applications, John Willey&Sons Inc. NY 1975

Name of	ELECTRONIC CIRCUITS						
The Course	AND DEVICES LAB						
Course	DPCO1019						
Code							
Prerequisite							
Corequisite							
Anti-							
requisite							
		L	T	P	C		
		0	0	2	1		

Course Objectives: 1. Understand the working of resistors, capacitors, inductors, transformers, diodes, transistors.

2. Understand the application of different electronic devices and simple circuits.

Course Outcomes

CO1	Test the basic electrical components
	like resistors, capacitors, inductors and
	diodes with its applications.
CO2	Design the rectifier, clipper and
	clamper circuits using diodes.

Text Book (s):1. N.N.Bhargava, Kulshreshtha& Gupta - "Baisc Electronics & Linear Circuits" -Tata Mc.Graw-Hill.

Reference Book (s):1. Thomas L. Floyd -Electronic Devices, 2-nd Ed, Merrill Publ.Co, Columbus-Ohio, 1988 2.Albert Paul Malvino - Electronic Principles,

Tata McGraw-Hill, New Delphi, 1982

Ex.1 Familiarization with lab instrument (Millimeter/CRO), etc. Ex.2

Semiconductor diode characteristics:

- (i) Identifications of types of packages, terminals and noting different ratings using data books for various types of semiconductor diodes (Germanium, point contact, silicon low power and high power and switching diode).
- (ii) Plotting of forward V-I characteristics for a point contact and junction P-N diode (Silicon & Germanium diode).

Ex.3

Rectifier circuits using semiconductor diode, measurement of input and output voltage and plotting of input and output wave shapes

(i) Half wave rectifier.

(ii) Full wave rectifier (center tapped and
bridge rectifier circuits)

Ex.4

To Plot forward and reverse V-I characteristics for a Zener diode.

Ex.5

To Plot wave shapes of a full wave rectifier with shunt capacitor, series inductor and pi filter circuit.

Ex.6

To Plot the input and output characteristics and calculation of parameters of a transistor in common base configuration.

Ex.7

Transistor Biasing circuits

- (i). Measurement of operating point (Ic&Vce) for a fixed bias circuit.
- (ii). Potential divider biasing circuits.

 (Measurement can be made by changing the transistor in the circuits by another of a same type number.

Ex.8

Plot the FET characteristics and determination of its parameters from these characteristics.

Ex.9

To Plot input and output characteristics and calculation of parameters of a transistor in common emitter configuration

Ex.10

Measurement of voltage gain and plotting of the frequency response curve of a JFET amplifier circuits.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
50	-	50	100

Name of The	Network, Filters and						
Course	Transmission Lines						
Course Code	DPCO2001						
Prerequisite							
Co-requisite							
Anti-requisite							
	•	L	T	P	C		
		3	0	0	3		

Course Objectives

- 1. To become familiar with propagation of signals through lines.
- 2. Calculation of various line parameters by conventional and graphical methods
- 3. Design of different types of filters, equalizer and attenuators.

Course Outcomes

Demonstrate Network theorems.
Calculate various Network parameters
by conventional methods.
Design of different types of attenuators
and their analysis.
Design and analysis of different types
of filters.
Apply knowledge of mathematics,
science, and engineering in
electromagnetic waves analysis

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: REVIEW OF NETWORK

THEOREMS

8 Hours

Review of the following, network theorem; superposition, Thevenin's Norton's and maximum power transfer.

Unit II: NETWORKS

8 Hours

- 2.1 One Port Network: Series and parallel tuned circuit, expression for their impedance.
- 2.2 Two Port (Four Terminals Networks):
 Basic concept of the following terms:
- (a) Symmetrical and asymmetrical networks.
- (c) T-network, L Network, Bridge Network.
- (d) Representation of a two port Network in terms of Z and H parameters.

Unit III: ATTENUATORS

6 Hours

- 3.1 Units of attenuation (decibel and nepers)
- 3.2 General characteristics of attenuators.
- 3.3 Analysis and design of simple attenuator of following types
- (a) Symmetrical T and n type.
- (b) L type.

Unit IV: FILTERS

9 Hours

- 4.1 Brief idea of the uses of filters networks in different communication system.
- 4.2 Connecting of low pass, high pass, band passes and band stop filters.
- 4.3 Theorem connecting attenuation constant a and characteristics impedance (Zo)

determination of cut of frequency constant K section.

- 4.4 Prototype filter section
- (a) T and n low pass filter section.
- (b)Attenuation Vs frequency; phase shift Vs frequency characteristics impedance Vs frequency of T and n.
- 4.5Basic Concept of active filter and comparison with passive.

Unit V: TRANSMISSION LINE

16 Hours

- 5.1 Transmission lines and their application: Shapes of different types of transmission lines; including 300 ohm antenna feeder cable, 75 ohm co-axial cable, optical fiber cable, Also other different types of cables.
- 5.2 Distributed (or primary) constants of a transmission line equivalent circuit of infinite line;
- 5.3 Definition of characteristic impedance of line; concept of short line termination in Zo currents no voltages long an infinite line; graphical representation; propagation constant, attenuation and phase shift constant of the line.
- 5.4 Relationship of characteristics impedance, propagation constant, attenuation constant and phase constant in term of distributed constants of the line.
- 5.5 Conditions for minimum distortion and minimum attenuation of signal on the line; necessity and different methods of loading the communication lines.
- 5.6 Concept of reflection and standing waves on a transmission line; definition of reflection coefficient in terms of characteristics

VSWR and voltage reflection coefficient,
maximum impedance on a line in term of
characteristics impedance and VWSR.
5.7 Transmission line equation; expression for
voltage, current and impedance at a point on
the lines for lines with and without losses.
Expression for the input impedance of the
line.
5.8 Input impedance of an open and shortcircuited line and its graphical representation.

impedance and load impedance; Definition of

Suggested Reading

- 1. A. Chakravorty- An Introduction to Network, Filters & Transmission Line- Dhanpatrai & Co.
- 2. J. P. Ryder-Network Filters & Transmission Line- PHI
- 3. Principles of Electromagnetics Mathew N.O. Sadiku
- 4. V. K. Aatre- Network Theory & Filter Design-New AgeInternational Pub.

Name of	NETWORK FILTERS AND				
The Course	TRANSMISSION LINES LAB				
Course	DPCO2005				
Code	D1 C02003				
Prerequisite					
Corequisite					
Anti-					
requisite					
		L	T	P	C
		0	0	2	1

Course Objectives: 1. To become familiar with propagation of signals through lines

- 2. Calculation of various line parameters by conventional and graphical methods
- 3. Design of different types of filters, equalizer and attenuators.

Course Outcomes

CO1	Demonstrate Network theorems.
CO2	Calculate various line parameters by
	conventional methods.
CO3	Design of different types of filters,
	equalizer and attenuators.

Text Book (s):1. A. Chakravorty- An Introduction to Network, Filters & Transmission Line- Dhanpatrai& Co.

Reference Book (s):1.D. R. Chaudhry- Network Analysis-DhanpatRai& Co.

2.V. K. Aatre- Network Theory & Filter Design-New AgeInternational Pub.

Ex.1
Experimental verifications of the
Thevenin' s and Norton' s theorem
with an a.c. source.
Ex.2
To measure the characteristics impedance of a
symmetrical T/Π (pi) network.
Ex.3
To design and measure the attenuation of a
symmetrical T/Π(pi) type attenuator.
Ex.4
Determine the characteristics impedance of a
prototype low pass filter.
Ex.5

Determine the characteristics impedance of a prototype high pass filter.

Ex.6

To plot the impedance characteristic of a prototype band pass filter.

Ex.7

Measurement of L & C of lossless transmission line.

Ex.8

Measurement of characteristics of a short transmission line.

Ex.9

Measurement of Zo of lossless transmission line.

Ex.10

Measurement of Attenuation of lossless transmission line.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
50		50	100

Name of The	Electronic Devices and				
Course	Circuits				
Course Code	DPCO2002				
Prerequisite	DPCO1014				
Co-requisite					
Anti-requisite					
	I	L	T	P	C
		3	0	0	3

Course Objectives

- 1. Understand the working of diodes, transistors.
- 2. Understand the application of different electronic devices and simple circuits.
- 3. To expose students to the function and application of the diodes, bipolar junction and field effect transistors in electronic circuits Course Outcomes

CO1	Discuss Multistage Transistor
COI	Amplifier
CO2	Develop the understanding of power
CO2	amplifiers.
CO3	Analyse different types of Feedback
COS	amplifier
CO4	Discuss Tuned voltage Amplifier.
CO5	Design Multi vibrators & Sinusoidal
005	Oscillator Circuits.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: MULTISTAGE TRANSISTOR AMPLIFIERS 6 Hours

- 1.1 Need of multistage amplifier, different coupling schemes and their working, brief mention of application of each of the type of coupling.
- 1.2 Working of R.C. coupled and transformer coupled multistage amplifier, approximate calculation of voltage gain for a two stage R-C coupled amplifier.
- 1.3 Frequency response of R-C coupled and transformer coupled amplifiers and its

physical explanation, definition and physical significance of the term as bandwidth, upper and lower cross over frequencies etc.

1.4 Direct coupled amplifier and its limitations, differential amplifier typical circuits diagram and its working.

Unit II: TRANSISTOR AUDIO POWER AMPLIFIERS 8 Hours

- 2.1 Difference between voltage and power amplifier, importance of impedance matching in power amplifier, collector efficiency of power amplifier.
- 2.2 Typical single ended power amplifier and its working, graphical method for calculation of output power, heat dissipation curve and importance of heat, sinks, class A, class B, class C amplifier (without derivation).
- 2.3 Working principle of push pull amplifier and circuits, its advantages over single ended power amplifier, cross over distortion in class B operation and its reduction, different driver stages for push pull amplifier circuit.
- 2.4 Working principle of complementary symmetry push pull circuit and its advantages.
- 2.5 Boot strap technique in amplifiers.
- 2.6 Transformer less audio power amplifiers and their typical application.
- 2.7 Mention of at least one popular IC with its block diagram, Pin configuration and it working of each type of power amplifier.

Unit III: FEED BACK AMPLIFIERS

6 Hours

- 3.1 Basic principle and types of feedback.
- 3.2 Effect of negative feedback on gain, stability, distortion and band width (Only

physical explanation)

- 3.3 Typical feedback circuits:
- (a) A.C. coupled amplifiers with emitter bypass, capacitor removed.
- (b) Emitter follower and its application, simple mathematical analysis for voltage gain and input impedance of above circuits.

Unit IV: TUNED VOLTAGE AMPLIFIERS

5 Hours

- **4.1** Classification of amplifiers on the basis of frequency.
- **4.2** Review of basis characteristics of tuned circuits, (Series and Parallel)
- 4.3 Single and Double tuned amplifier, their working principles and frequency response (no mathematical derivation). Concepts of neutralization.
- 4.4 Staggered tuned amplifier and typical applications in brief.
- 4.5 Mention of at least one popular IC with its block diagram, Pin configuration and it working of each type of Tuned amplifier.

Unit V: SINUSOIDAL OSCILLATORS 10 Hours

- 5.1 Application of oscillators.
- 5.2 Use of positive feedback/negative resistance for generation of oscillation, barkhausen's criterion for oscillations.
- 5.3 Different oscillators circuits, tuned collector, Hartley, Colpitts, phase shift, Wien's bridge and crystal oscillator and their working principles (no mathematical derivation).
- 5.4 Mention of at least one popular IC with its block diagram, Pin configuration and it working of each type of oscillators.

- 5.5 Ideal transistor switch; explanation using
- C.E. output characteristics, calculation of component values (collector and base resistors) for a practical transistor switch.
- 5.6 Transistor switching time. Use of speed up capacitor (Physical explanation).
- 5.7 Basic concept of working of collector coupled bistable, monostable and stable multivibrator circuits including principle of triggering.
- 5.8 Operation of Schmitt trigger, calculation of upper trigger potential (UTP) and lower trigger potential (LTP).
- 5.9 Mention of applications of multivibrators and Schmitt trigger. Its use as waveform generator.

Suggested Reading

- 1. Thomas L. Floyd Electronic Devices, 2-nd Ed, Merrill Publ.Co, Columbus-Ohio, 1988
- 2. Albert Paul Malvino Electronic Principles, Tata McGraw-Hill, New Delphi, 1982
- 3. Stephan Senturia, Bruce Wedlock Electronic Circuits and Applications, John Willey&Sons Inc. NY 1975

Name of	ELECTRONIC DEVICES				
The Course	AND CIRCUITS LAB				
Course	DPCO2006				
Code					
Prerequisite					
Corequisite					
Anti-					
requisite					
	1	L	T	P	C
		0	0	2	1

Course Objectives: 1. Understand the working of diodes, transistors.

- 2. Understand the application of different electronic devices and simple circuits.
- 3.To expose students to the function and application of the diodes, bipolar junction and field

effect transistors in electronic circuits.

Course Outcomes

CO1	Develop the understanding of power
	amplifiers and tuned voltage
	amplifiers.
CO2	Analyze different types of oscillators
	and wave shaping circuits.
CO3	Design Multi vibrators & OP-AMP
	Circuits.

Text Book (s):1. N.N.Bhargava, Kulshreshtha& Gupta - "Baisc Electronics & Linear Circuits" -Tata Mc.Graw-Hill. Reference Book (s):1. N.N. Bhargava, Kulshreshtha& Gupta - "Baisc Electronics &

2.Albert Paul Malvino - Electronic Principles, Tata McGraw-Hill, New Delphi, 1982

Linear Circuits" - Tata Mc.Graw-Hill.

Ex.1 To measure the overall gain of two stage R.C. coupled amplifier at 1 Khz and note the effect of loading of second stage on the first stage Ex.2 To plot the frequency response of R-C coupled amplifier

Ex.3

- (a) To plot the load Vs output power characteristics to determine the maximum signal input for undistorted signal output.
- (b) The above experiment is to be performed with single ended power amplifier;Transistorized push; pull amplifier;Complementary Symmetry power Amplifier

Ex.4

To observe the effect of a by-pass capacitor by measuring voltage gain and plotting of frequency response for a single stage amplifier Ex.5

Measurement of voltage gain input and output impedance and plotting of frequency response of an emitter follower circuit.

Ex.6

Measurement of resonant frequency, plotting of the response curve (i.e., graph between input frequency and impedance) and calculation of Q with the help of this curve for series and parallel resonant circuit.

Ex.7

measure the frequency response of a single stage tuned voltage amplifier and calculation of the O of the tuned circuit load

Ex.8

Observe and plot the output wave shapes of;

- (a) R-C differentiating circuits.
- (b) R-C integrating circuits for square wave input (Observe the effect of R-C time constant of the circuits on the output wave shape for both the circuits).

Ex.9

Identification, Pin configuration and basic working of different popular IC's - Ex.- Power

amplifier, Oscillator, Tuned amplifier, Multivibrator, Timer.

Ex.10

Use of Op-Amp. (for IC-741) as Inverting and non-inverting amplifier, adder, comparator, buffer, scale changer.

Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Test	Term	Marks
(IA)	(MTE)	Test	
		(ETE)	
50	-	50	100

Name of The	Principle of	Digi	ital		
Course	Electronics				
Course Code	DPCO2003				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
		3	0	0	3

Course Objectives

- 1.To acquire the basic knowledge of digital logic levels and application of knowledge to understand digital electronics circuits.
- 2.To prepare students to perform the analysis and design of various digital electronic circuits.
- 3. To understand number representation and conversion between different representation in digital electronic circuits.
- 4. To analyze logic processes and implement logical operations using combinational logic circuits

Course Outcomes

	Have a thorough understanding of the
CO1	fundamental concepts and techniques
	used in
	digital electronics.
	The ability to understand, analyze and
CO2	design half adder and full adder
	circuit.
	To understand and examine the
CO2	structure of various number systems
CO3	and its
	application in digital design.
	The ability to understand, analyze and
CO4	design various combinational and
CO4	sequential
	circuits.
COF	To develop skill to build, and
CO5	troubleshoot digital circuits.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Number System	8 Hours

- 1.1 Basic difference between analog and digital signal.
- 1.2 Application and advantages of digital and analog signal.
- 1.3 Binary, Octal and Hexadecimal number system; conversion from decimal octal and hexadecimal to binary and vice-versa.
- 1.4 Binary addition, subtraction, multiplication and division including binary

points.1's and 2's complements method of subtraction, Boolean Algebra.

1.5 Gray code, Gray to binary conversion and vice-versa, 8421 and excess-3 codes; mention of other popular BCD codes

Unit II:Logic Gates

6 Hours

- 2.1 Definition, symbols and truth tables of NOT, AND, OR, NAND, NOR, EXOR Gates.
- 2.2 Use of NAND and NOR gates as universal gates.
- 2.3 Design of Half adder and Half subtractor.
- 2.4 Design of Full adder circuits and its operation.

Unit III: Logic Simplification

6 Hours

- 3.1 Boolean algebra, Karnaugh-mapping (up to 4 variables) and simple application in developing combinational logic circuits.
- 3.2 Implementation of logic equations with gates.

Unit IV: Combinational Circuits

6 Hours

- 4.1 LED, LCD, seven segment display, basic operation of various commonly used types.
- 4.2 Four Decoder circuits for 7 segment display.
- 4.3 Basic decimal to BCD encoder circuits.
- 4.4 Use of decoders/driver ICs with reference to commercial ICs.
- 4.5 Basic Multiplexer and Demultiplexer

Unit V: Sequential Circuits

10 Hours

- **5.1** Latches, flip Flop, Clock Pulse, triggering techniques
- 5.2 Operation using waveforms and truth tables of following flipflops. RS, T, RST, D,
- JK, Master/Slave JK Flip Flops mention of commonly used ICs Flip flops.
- 5.3 Basics of Counters, Ring counter.

5.4 Introduction and Basic concepts including shift left and shift right. Serial in serial out, Serial in parallel out, Parallel in serial out, Parallel in parallel out. 5.5. Semi-conductor ROMs, PROMs, EPROM, SRAM, DRAM, Basic structure and working of CCD, R/W memory.

School of Suggested Reading

- 1.Malvino& Leach- Digital Principles & **Application- Mcgraw Hill- 5th Edition.**
- 2.Mano, M. Morris- Digital Logic and Computer Design- Prentic Hall (India).
- 3. Digital Electronics by S. Salivahan.
- 4. Digital Fundamentals by Floyd.

Name of	PRINCIPLES OF DIGITAL				
The Course	ELECTRONICS	LAI	3		
Course	DPCO2007				
Code	D1 002007				
Prerequisite					
Corequisite					
Anti-					
requisite					
		L	T	P	C
		0	0	2	1

Course Objectives: 1. To acquire the basic knowledge of digital logic levels and application of knowledge to understand digital electronics circuits.

2. To prepare students to perform the analysis and design of various digital electronic circuits.

Course Outcomes

CO1	Design combinational circuits.
CO2	Develop the understanding of various synchronous and asynchronous sequential circuits.

Text Book (s):1. Malvino& Leach- Digital Principles & Application- Mcgraw Hill- 5th Edition.

Reference Book (s):1. Digital Electronics by S.Salivahan.

2.Digital Fundamentals by Floyd.	
Ex.1	
Identification of Ic-nos, Pin-nos, Ic types.	
Ex.2	
Familiarization with TTL And MOS ICs.	
Ex.3	
To observe that logic low and logic high of	f
logic gate.	
Ex.4	
To observe the propagation delay of TTL	logic
gate.	
Ex.5	
Observation of the difference between MO	OS
and TTL gates under the following heads	
(a) Logic levels.	
(b) Operating voltages.	
(c) Propagation delay.	
Ex.6	
Familiarization and use different types of	
LEDs common anode and common cathod	de
seven segment display.	
Ex.7	
Use of 7447 BCD to 7-segment decoder.	
Ex.8	

Verification of truth table for 2 Input NOT,
AND, OR, NAND, NOR, XOR Gates. Design
and Implementation Of Simple Logic Circuits.
Ex.9
To construct a 4-bit even/odd parity
generator/checker using XOR gates and to
verify their truth tables.
Ex.10
To construct half adder and half subtract or
using XOR and NAND gates verification of
their truth tables.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
50	-	50	100

Name of The Course	Technical Drawing				
Course Code	DPCO2004				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
		2	0	0	2

Course Outcomes

	Use the techniques and able to
CO1	interpret the drawing in Engineering
	field
CO2	Interpret engineering drawings using
	fundamental technical mathematics
CO3	Construct basic and intermediate
	geometry products

	Develop their visualization skills so that
CO4	they can apply these skills in
	developing new products
	Draw two-dimensional orthographic
CO5	drawings and three-dimensional
	isometric views

Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
30	20	50	100

Course Content:

Unit I: STANDARD SYMBOLS OF				
PASSIVE DEVICES.	3 hours			
1.1 Resistors Capacitors: Fixed, preset,				

variable, electrolytic and ganged types.

1.2 Inductors: Fixed, tapped and variable types, RF & AF chokes, Air cored, Solid cored &laminated cored.

1.3 Transformers: Step-up, step-down. AF & RF types, Auto-transformer, IF transformer. Antenna, Chassis, Earth, Loudspeaker, Microphone, Fuse Indicating lamp, Coaxial cable, Switches-double pole single throw (DPST), Double pole throw (DPT) and Rotary types terminal and connection of conductors.

Unit II: ACTIVE DEVICES 5 Hours

Semiconductor: Rectifier diode, Zener diode, Varactor diode, Tunnel diode, Photo, Light emitting diode (LED), Bipolar transistor, junction field effect transistor (JFET), Mosfet, Photo transistor, Uni junction transistor (UTJ), Silicon control rectifier (SCR), Diac, Triacs outlines (with their types numbers e.g., TO3, TO5, TO18, TO39, TO65 etc.) of the different types of semiconductor diodes, Transistors Scrs, Diacs, Triacs and ICs (along with indicators for pin identification etc.)

Unit III: COMMUNICATION

INSTRUMENTS

2 Hours

Telephone Transmitter, Receiver, Filters & Hybrid transformer

Unit IV: LOGIC GATES

4 Hours

Draw standard symbols of NOT, AND, NAND, OR, NOR XOR, Expandable & Tristate gates, Op Amp IC, Flip-flops (Combination of 2,3,4 input gates should be drawn).

Unit V: SKETCHES/CIRCUIT DIAGRAMS 8 Hours

- 5.1 Circuit diagram of a Wein's bridge oscillator.
- 5.2 Circuit diagram of a Battery eliminator.
- 5.3 Block diagram of a typical Radio receiver.
- 5.4 Block diagram of an Electronic multimeter.
- 5.5 Circuit of Emergency light.
- 5.6 Circuit diagram of Voltage stabilizers.
- 5.7 Circuit diagram of Fan regulator.
- 5.8 Schematic Diagram of electrical & Electronic CKT.

Suggested Reading

- 1.Jensen, Cecil. H, Engineering Drawing and Design, New York: McGraw-Hill
- 2. Basic Engineering Drawing by R.S. Rhodes & L.B. Cook
- 3. Electronics Engineering Drawing Book, A.K Mittal

Name of The	ENGG. MECHANICS &				
Course	MATERIALS				
Course Code	DPME2018				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
		3	0	0	3

Course Objectives

- 1. Understand the basics of engineering mechanics and forces
- 2. Understand the laws of forces and their concept
- 3. compare and relate the stress and strain and properties of materials electronic circuits

 Course Outcomes

	Recognize and analyse basic theory and
CO1	principles of forces in mechanics and
	their relationship to engineering
	Describe the resultant forces
CO2	(combination of forces) and laws of
	forces
CO2	Describe and understand the rigid
CO3	body concept and moment.
004	Calculate and Understand the concept
CO4	of stress and strain and torsion
	Differentiate different material
CO5	properties and welding, soldering,
	brazing techniques

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Introduction

6 Hours

Mechanics and its utility. Concept of scalar and vector quantities. Effect of a force.

Tension & compression. Rigid body. Principle of physical independence of force. Principle of transmissibility of a force.

Unit II: Forces Analysis

8 Hours

Concept of coplanar and non-coplanar forces including parallel forces. Concurrent and non-concurrent forces. Resultant force.

Equilibrium of forces. Law of parallelogram of forces. Law of triangle of forces and its converse. Law of polygon of forces. Solution of simple engineering problems by analytical and graphical methods such as simple wall crane, jib crane and other structures. Determination of resultant of any number of forces in one plane acting upon a particle, conditions of equilibrium of coplanar concurrent force system.

Unit III: General Condition of Equilibrium

10 Hours

General condition of equilibrium of a rigid body under the action of coplanar forces, statement of force law of equilibrium, moment law of equilibrium, application of above on body.

Unit IV: Stresses and strains

10 Hours

Concept of stress and strain. Concept of various types of stresses and strains.

Definitions of tension, compression shear, bending, torsion. Concept of volumetric and lateral strains, Poisson's ratio. Mechanical properties of MS, SS, CI Al and etc.

Unit V: (A) Materials & Concept Used in Electronics & (B) Soldering & Brazing: 10 Hours

Soldering materials - Type, chemical composition and properties, Soldering alloys -Tin lead, Tin antimony, Tin silver, Lead silver, Tin zinc, Different types of flux and their properties, Properties of plastics materials, Epoxy materials for PCB (Single and multi-layer board), Emulsion parameters, Film emulsion, Type of laminates (Phenolic, Epoxy, Polyester, Silicon, Melamine, Polyamide), Properties of copper clad laminates, Material (Filler, Resin, Copper Foil) Photo printing basic for double side PCB, Photo resin materials coating process materials, Screen printing and its materials Etching agent, Film processing and used materials. For black Galvanized and Tin coated Iron sheet, brass and copper sheets only.

- (1) Its concept, comparison with welding as joining method and classification, electric soldering and forge soldering.
- (2) Soldering operation- edge preparation of joints, Pickling and degreasing, Fluxing, Tinning and Soldering. Wave soldering, solder mask, Dip soldering, Drag soldering,

- (3) Materials Used-Common fluxes, soft and hard solder, solder wire (Plain and Resin core) and sticks, spelters and their specifications and description (For Identification Only), forge soldering bits.
- (4) Electric soldering iron, other soldering tools.
- (5) Common defects likely to occur during and after soldering.
- (6) Safety of Personnel, Equipment & Tools to be observed.

Suggested Reading

- 1. Karmveer, 'Engineering Mechanics and Material, First edition: 2016, A unit of Krishna Group, I.S.B.N. No.: 978-81-8283-860-4
- 2. Dr.P.C.Sharma, 'Production technology', (Manufacturing Processes)

Name of The	Principles of Communication				
Course	Engineering				
Course Code	DPCO2008				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
		3	0	0	3

Course Objectives

- 1 Develop and compare the functional blocks of coding/modulation and demodulation/decoding for analog and digital communication systems.
- 2. Analyze the analog-to-digital conversion process with emphasis on Nyquist Sampling Criteria, pulse shaping and optimum detection functions

3. Student understand the basic signals and systems

Course Outcomes

CO1	Illustrate the basic of analog communication.
CO2	Develop understanding about AM transmission and reception
CO3	Explain about FM and PM transmission and reception
CO4	Analyse different characteristics of pulse modulation
CO5	Identify different types of noise and predict its effect on various analog communication systems.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Introduction	2 Hours
Need for modulation and demodula	ition in
communication systems.) Basic sch	eme of
modern communication system.	
Unit II: AMPLITUDE MODULAT	ION
8 Hours	

- (a) Derivation of mathematical expression for an amplitude modulated wave showing Carrier and side band components.
- (b) Significance of Modulation index, spectrum and bandwidth of AM wave, relative power distribution in carrier and sidebands. PRINCIPLE OF AM MODULATORS-

Working principles and typical applications of

- (a) Collector Modulator
- (b) Balanced Modulator

DEMODULATION OF AM WAVES-

- (a) Principles of demodulation of AM wave using diode detector circuit, concept of diagonal clipping and formula for minimum distortion (No derivation).
- (b) Principle of demodulation of AM wave using synchronous detection
- (c) Elementary idea of DSB-FC, DSB-SC, SSB-SC, ISB and VSB modulations, their comparison and areas of applications

Unit III: FREQUENCY MODULATION

10 Hours

- (a) Derivation of expression for frequency modulated wave and its frequency spectrum (without proof and analysis of Bessel function), modulation index, maximum frequency deviation and deviation ratio, BW of FM signals, Carlson's rule.
- (b) Effect of noise on FM carrier, noise triangle, need for pre-emphasis and deemphasis, capture effect.
- (c) Comparison of FM and AM communication system.

PRINCIPLES OF FM MODULATORS-(a)

Working principles and applications of reactance modulator, VCO and Armstrong phase modulator, stabilization of carrier using AFC.

(b) Block diagram and working principles of reactance transistor and Armstrong FM transmitters DEMODULATION OF FM WAVES-(a) Basic principles of FM detection using slope detector.

Principles & working of the following FM demodulators.Ratio Detector,Phase Locked Loop (PLL) FM Detector

Unit IV: PHASE MODULATION 10 Hours

Derivation of expression for phase modulated wave, modulation index, comparison with frequency modulation

- (a) Working principles and applications of reactance modulator, VCO and Armstrong phase modulator, stabilization of carrier using AFC.
- (b) Block diagram and working principles of reactance transistor and Armstrong FM transmitters

Project Based Learning: digital data transmission system.

Unit V: MULTIPLEXING TECHNIQUE 10 Hours

- (a) Statement of sampling theorem and elementary idea of sampling frequency for pulse modulation.
- (b) Basic concepts of time division multiplexing (TDM) and frequency division multiplexing (FDM).
- (c) Basic ideas about PAM, PPM, PWM and their typical applications.
- (d) Basic Block diagram and working principle of ASK, PSK, FSK & QPSK

Suggested Reading

 "Introduction to Analog & Digital Communication Systems", "Haykin Simon", John Wile

2. B.P.Lathi, "Digital and analog communication system", international 4th Edition, OXFORD university press, ISBN: 0195110099, 9780195110098

		EN	GG	•
DPCO2012				
	.	m	ъ	
	L 0	T 0	P 2	C 1
	COMMUNICATI LAB	LAB DPCO2012 L	COMMUNICATION EN LAB DPCO2012 L T	COMMUNICATION ENGGLAB DPCO2012 L T P

Course Objectives: 1. Develop and compare the functional blocks of coding/modulation and demodulation/decoding for analog and digital communication systems.

2. Analyze the analog-to-digital conversion process with emphasis on Nyquist Sampling Criteria, pulse shaping and optimum detection functions

Course Outcomes

CO1	Develop understanding about AM
COI	transmission and reception.
CO2	Demonstrate FM and PM transmission
CO2	and reception.
CO3	Analyze different characteristics of
CO3	pulse modulation.

Text Book (s):1. "Introduction to Analog& Digital Communication Systems", "Haykin Simon", John Wile
Reference Book (s):1.B.P.Lathi, "Digital and analog communication system", international 4th Edition, OXFORD university press, ISBN: 0195110099, 9780195110098
2.Kennedy" Electronic Communications"
McGraw Hill Publication, ISBN-13:978-0-07-463682-4; ISBN-10:0-07-463682-0

Ex.1

(a) To conserve an AM wave on CRO produced by a standard signal generator using internal and external modulation. (b) To measure the modulation index of the wave obtained in above practical.

Ex.2

- a) To obtain an AM wave from a collector modulator circuit and observe the AM pattern on CRO.
- (b) To measure index of modulation of the AM signal for different levels of modulating signal.

Ex.3

To obtain a FM wave from reactance tube modulator/voltage-controlled oscillator circuit and measure the frequency deviation for different modulating signals

Ex.4

To obtain modulating signal from an AM detector circuit and observe the pattern for different RC time constants and obtain its optimum value for least distortion.

Ex.5

To obtain modulating signal from a FM detector (Foster Seely/Ratio detector/quadrature/IC) circuit and plot the discriminator characteristics.

Ex.6

To observe the sampled signal and compare it with the analog input signal. Note the effect of varying the sampling pulse width and frequency on the sampled output

Ex.7

To verify the sampling theorem.

Ex.8

To time division multiplex the two given signals.

Ex.9

To measure the quantization noise in a 3 bit/4-bit coded PCM signal.

Ex.10

To study the process of delta modulation/demodulation.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
50	-	50	100

Name of The	Antenna, Microwave &				
Course	Radar Engineering				
Course Code	DPCO2009				
Prerequisite	DPCO2001				
Co-requisite					
Anti-requisite					
	1	L	T	P	C
		3	0	0	3

Course Objectives

- 1. To understand Analysis of Waveguides and gain complete knowledge about Microwave Components.
- 2. Design of Impedance Matching and Tuning using lumped and distributed elements for network
- 3. To Analysis and study characteristics of microwave tube

Generators and Amplifiers.

Course Outcomes

CO1	Identify basic antenna parameters
CO2	Design and analyse wire, aperture and
CO2	microstrip antennas
CO3	Explain various antenna measurements
CO4	Analyse and measure different
CO4	microwave components.
CO5	Identify characteristics of radio wave
COS	propagation.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Introduction	2 Hours
Antenna as an element of wireless	
communication system, Types of an	tennas
Antenna parameters: Radiation pa	ttern
(polarization pattern, Field and pha	se
pattern), Radiation intensity, Beam	width,
Gain, Directivity, Polarization, Band	dwidth,

Efficiency, Effective height, Effective aperture of different antenna

Unit II: ANTENNA AS A TRANSMITTER
AND RECEIVER 8 Hours

Power delivered to antenna as a receiver,
Input impedance and firs transmission
equation, Properties of uniform plane waves,
Radiation from an infinitesimal small current
element, Radiation from an elementary dipole
(Hertzian dipole), Power density and radiation
resistance for small current element and half
wave dipole

Unit III: MICROSTRIP ANTENNAS

10 Hours

Microstrip Antennas & their advantages,
Rectangular Patch, Circular Patch, Quality
Factor, Bandwidth, and Efficiency,
Transmission Line model analysis of
Microstrip Antenna. Dielectric effect,
Dielectric Loss Tangent- tan δ

Unit IV: MICROWAVE

10 Hours

Introduction to microwave and its applications, classification on the basis of its frequency band according ITU standards.

Construction, Operating Principles,
Performance characteristics and Applications of the following - (a) Microwave Tubes- Multicavity Klystron, Multi-cavity Magnetron,
Reflex Klystron, Travelling wave tube and BWO. (b) Microwave Semiconductor Devices - PIN, Tunnel Diode, IMPATT and
TRAPATT and Gun diode (in brief only)
Different types of waveguides and their applications. Propagation constant of a rectangular waveguide, cut off wavelength, guide wavelength. (No Mathematical

Derivation), Microwave components-Tees, Bends, Matched termination, Detector mount, Slotted section, directional coupler, Circulator and duplexer-their constructional features characteristics and application.

Unit V: RADAR SYSTEMS

8 Hours

Introduction to Radar, its various application. Radar range equation (No Derivation) and its application

Block diagram and operating principle of basic pulse radar

Block diagram, operating principle of CW (Doppler) and FMCW radars and their application.

Project based learning: Working model of a Radar System

Suggested Reading

- 1. "Antennas and Radio Propagation, Collins, R. E, McGraw-Hill,1987
- 2. Antennas, Kraus and RonalatoryMarhefka, John D., Tata McGraw-Hill, 2002

Name of	ANTENNA, MICROWAVE &				
The Course	RADAR ENGG. LAB				
Course	DDC02012				
Code	DPCO2013				
Prerequisite	DPCO2005				
Corequisite					
Anti-					
requisite					
	1	L	T	P	C
		0	0	2	1

Course Objectives: 1. To understand Analysis of Waveguides and gain complete knowledge about Microwave Components.

2. Design of Impedance Matching and Tuning using lumped and distributed elements for network

Course Outcomes

CO1	Identify basic antenna parameters
CO2	Design and analyze wire, aperture and
CO2	microstrip antennas
CO3	Determine various antenna
003	measurements

Text Book (s):1. Antenna Theory, Ballanis, John Wiley & Sons, 2003

Reference Book (s): Antennas and Radio Propagation, Collins, R. E, McGraw-Hill,1987.

List of Experiments
Ex.1
Study radiation pattern of any two types of
linear antenna
Ex.2
Study of waveguide horn and its radiation
pattern and determination of the beam width.
Ex.3
To study working of MIC Components like
Micro strip Line, Filter, Directional Coupler,
Wilkinson Power Divider, Ring resonator &
coupler, antennas & amplifies.
Ex.4
Measurement of impedance of an unknown
load connected at the output end of the slotted
line carriage in a Micro wave Bench.
Ex.5

Measurement of guide wavelength and
frequency of the signal in a rectangular
Waveguide using slotted line carriage in a
Micro wave Bench.
Ex.6
Study various parameters of Isolator.
Ex.7
Measurement of attenuation of a attenuator
and isolation, insertion loss, cross coupling of
a circulator.
Ex.8
Determine the S-parameter of a Magic Tee.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
50	-	50	100

Name of The	Microprocessor and its				
Course	Applications				
Course Code	DPCO2010				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
		3	0	0	3

Course Objectives

- 1. To understand basic architecture of 16 bit and 32-bit microprocessors
- 2. Develop worst-case execution time of programs programs, to maximize its run time memory or execution-time.

Course Outcomes

CO1	Develop assembly language programs of moderate complexity.
CO2	Identify an appropriate 'architecture' or program design to apply to a particular situation.
CO3	Develop worst-case execution time of programs programs, to maximize its run time memory or execution-time.
CO4	Explain the effects of the properties of the bus on the overall performance of a system.
CO5	Compare the characteristics of RISC and CISC architectures.

Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
20	30	50	100

Course Content:

Unit I: OVERVIEW OF

MICROCOMPUTERS SYSTEM

8 Hours

- 1.1 Functional block. (a) CPU.
- (b) Memory.
- (c) Input/Out devices (Key board, Floppy drive, Hard disk drive, Tape drive, VDU, Printer, Plotter).
- 1.2 Concept of programme and data memory.
- (a) Registers (general purpose).
- (b) External memory for storing data and results.
- 1.3 Data transfer between registers.
- 1.4 Concept of tristate bus.
- 1.5 Control on registers.

Unit II: MEMORY OF A

MICROCOMPUTER

8 Hours

- 110415
- 2.1 Concept of byte organized memory.
- (a) Address inputs.
- (b) Address space.
- (c) Data input/output.
- 2.2 Addressing and Address decoding.
- (a) Memory system organization.
- (b) Partitioning of total memory space into small blocks.
- (c) Bus contention and how to avoid it.
- 2.3 Memory chips.
- (a) Types of ROM, RAM, EPROM, PROM.
- (b) Read/Write inputs.
- (c) Chip enable/select input.
- (d) Other control input/output signals.
 - Address latching.
 - Read output.
 - Address strobes.
- (f) Power supply inputs.
- 2.4 Extension of memory.
- In terms of word length and depth

Unit III: C P U AND CONTROL 10 Hours

- 3.1 General microprocessor architecture.
- 3.1 Instruction pointer and instruction register.
- 3.2 Instruction format, Machine and Mnemonics codes, Machine and Assembly language.
- 3.3 Instruction decoder and control action.
- 3.4 Use of Arithmetic Logic Unit.
- Accumulator.
- Temporary Register.
- Flag flip-flop to indicate overflow, underflow, and zero result occurrences.

- 3.5 Timing and control circuit.
- Crystal and frequency range for CPU operation.
- Control bus to control peripherals.

Unit IV: ASSEMBLY LANGUAGE

PROGRAMMING

10 Hours

- **4.1**Evolution of Microprocessor, Internal organization of 8085
- 4.2Register Structure, ALU, BUS Organization
- 4.3Timing and Control, Pin Diagram of 8085
- 4.4 internal organization of 8086, Bus
 Interface Unit, Execution Unit, Unit, register,
 Organization.
- 4.5Sequential Memory Organization, Bus Cycle, Pin Diagram of 8086. Addressing Modes.
- 4.6 Data Transfer, Instructions, Arithmetic and Logic Instruction, Program Control Instructions (Jumps, Conditional Jumps, Subroutine Call) Loop and String Instructions, Assembler Directives.

Unit V:MICRO CONTROLLERS 8 Hour

- 5.1Brief idea of Microcontroller 8051
- 5.2Pentium and Power PC
- **5.3MEMORY INTERFACING**
- 5.4Types of Memory, RAM and ROM Interfacing with Timing Considerations,

DRAM Interfacing

Suggested Reading

- 1. A.K.Ray and K.M.Bhurchandi, "Advanced Microprocessors and Peripherals", Tata
- 2. Muhammad Ali Mazidi and Janice Gillispie Mazidi, "The 8051 – Microcontroller and Embedded

systems",7th Edition, Pearson Education, 2004.

Name of The Course	MICROPROCESSOR AND ITS APPLICATIONS LAB				
Course Code	DPCO2014				
Prerequisite					
Corequisite					
Anti-requisite					
		L	T	P	C
		0	0	2	1

Course Objectives: 1. To understand basic architecture of 16 bit and 32-bit microprocessors.

2. To understand interfacing of 8-bit microprocessor with memory and peripheral chips involving system design.

Course Outcomes

CO1	Develop assembly language programs
	of moderate complexity.
CO2	Develop worst-case execution time of
	programs programs, to maximize its
	run time memory or execution-time.
CO3	Identify an appropriate 'architecture'
	or program design to apply to a
	particular situation.

Text Book (s):1. A.K.Ray and K.M.Bhurchandi, "Advanced Microprocessors and Peripherals", Tata McGrawHill, 2000.

Reference Book (s):1. Ramesh S. Gaonkar, "Microprocessor & its Applications.

2.Doughlas.V. Hall, "Microprocessor and Interfacing: Programming and Hardware", 2nd edition, McGraw Hill, 1991.

,
Ex.1
Addition of two 8-bit numbers
Ex.2
(a) To obtain 2's complement of 8-bit number
(b) To subtract a 8 bit number from another 8
bit number using 2's Complement
Ex.3
Extract fifth bit of a number in A and store it
in another register.
Ex.4
Count the number of bits in high state in
accumulator
Ex.5
Check even parity and odd parity of a binary
number
Ex.6
Addition of two sixteen-bit numbers
Ex.7
Subtraction of a sixteen-bit number from
another sixteen-bit number
Ex.8
Multiplication of two 8-bit numbers by
repetitive subtraction
Ex.9
Divide two 8-bit numbers by repetitive
subtraction
Ex.10
(a) Smallest number of three numbers.
(b) Largest number of three numbers

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
50	-	50	100

Name of The	Electronic Instruments &				
Course	Measurements				
Course Code	DPCO2011				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
		3	0	0	3

Course Objectives

- 1. Understanding the requirements to generate electronic signals.
- 2. Discussing different techniques to stabilize strength and frequency.
- 3. Understanding different techniques to measure frequency.

Course Outcomes

	Develop skill of mustimeters,
CO1	voltmeters, ammeters, CRO for
	electronics projects. Review basics of
	Measurements.
	Design a system, component or process
	to meet desired needs in electronics
CO2	engineering. Study of various
COZ	measuring instruments and devices.
	3. Measure R, L, C, Voltage, Current,
	Power factor, Power.
	Measure R, L, C, Voltage, Current,
CO3	Power factor, Power. Understand the
	basics of CRO and its applications.

CO4	Calculate unknown values for ac
bridges.	
CO5	Test frequency, phase with
005	Oscilloscope & frequency generator

Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
20	30	50	100

Course Content:

Unit I: Basics of Measurement:

5 Hours

(i) Review of performance, specifications of instruments, accuracy, precision, sensitivity, resolution range etc. Errors in measurement and loading effects.

Unit II:Measuring Devices:8 Hours

- 2.1 Concept of byte organized memory.
- (a) Address inputs.
- (b) Address space.
- (c) Data input/output.
- 2.2 Addressing and Address decoding.
- (a) Memory system organization.
- (b) Partitioning of total memory space into small blocks.
- (c) Bus contention and how to avoid it.
- 2.3 Memory chips.
- (a) Types of ROM, RAM, EPROM, PROM.
- (b) Read/Write inputs.
- (c) Chip enable/select input.
- (d) Other control input/output signals.
 - Address latching.
 - Read output.

- Address strobes.
- (f) Power supply inputs.
- 2.4 Extension of memory.
- In terms of word length and depth

Unit III: Cathode Ray Oscilloscope 10 Hours

- (i) Construction of CRT, Electron gun,
 electrostatic focusing and acceleration
 (Explanation only no mathematical treatment)
 Deflection sensitivity, brief mention of screen
 phosphor for CRT in relation to their visual
 persistence and chemical composition
- (ii) Explanation of time base operation and need for blanking during fly back; synchronization
- (iii) Block diagram explanation of a basic CRO and a triggered sweep oscilloscope, front panel controls
- (iv) Specifications of a CRO and their significance
- (v) Use of CRO for the measurement of voltage (dc and ac) frequency, time period and phase angles
- (vi) Special features of dual trace, delayed sweep and storage CROs (brief mention only); introduction to digital CROs
- (vii) CRO probes, including current probes.

Unit IV: Signal Generators and Analysis Instruments 10 Hours

- (i) Block diagram, explanation and specifications of (a) Laboratory type low frequency and RF signal generators, (b) Pulse generator and function generator
- (ii) Brief idea for testing, specification for the above instruments
- (iii) Distortion factor meter, wave analysis and spectrum analysis

- (i) Block diagram explanation of working principles of a laboratory type (balancing type) RLC Bridge. Specifications of a RLC bridge.
- (ii) Block diagram and working principles of a Q-meter

Unit V: Digital Instruments

8 Hours

- (i) Comparison of analog and digital instruments, characteristics of a digital meter
- (ii) Digital voltmeter
- (iii) Block diagram and working of a digital multi-meter
- (iv)Working principle of time interval, frequency and period measurement using universal counter/frequency counter, timebase stability, accuracy and resolution
- (v) Principles of working and specifications of logic probes, signature analyzer and logic analyzer.
- (vi) Digital, LCR bridges

Suggested Reading

- 1. J.B. JUPTA, "Electrical and Electronic Measurements and Instruments"
- 2. A. K. Sawhney A course in Electrical & Electronic Measurement & Instrumentation Dhanpat Rai & Sons.

Name of The	Electronic Instruments &				
Course	Measuremen	Measurements Lab			
Course Code	DPCO2019	DPCO2019			
Prerequisite					
Corequisite					
Antirequisite					
		L	T	P	C
		0	0	2	1

Course Objectives: 1. Understanding the requirements to generate electronic signals.

2. Discussing different techniques to stabilize strength and frequency

Course Outcomes

CO1	Develop skill of multimeters, voltmeters, ammeters, CRO for electronics projects.
CO2	Measure R, L, C, Voltage, Current, Power factor, Power.
CO3	Calculate unknown values for ac bridges.

Text Book (s):1. J.B. JUPTA, "Electrical and Electronic Measurements and Instruments"

Reference Book (s): A. K. Sawhney - A course in Electrical & Electronic Measurement & Instrumentation - Dhanpat Rai & Sons

List of Experiments
Ex.1
To observe the loading effect of a multimeter
while measuring voltage across a low
resistance and high resistance
Ex.2
To observe the limitations of a multimeter for
measuring high frequency voltages and
currents
Ex.3
To measure Q of a coil and observe its
dependence on frequency, using a Q-meter
Ex.4
Measurement of voltage, frequency, time
period, and phase angle using CRO
Ex.5
Measurement of time period, frequency,
average period using universal
counter/frequency counter
Ex.6
Measurement of rise, fall and delay times
using a CRO
Ex.7
Measurement of distortion of a LF signal
generator using distortion factor meter
Ex.8
Measurement of R, L and C using a LCR
bridge/universal bridge

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
50	-	50	100

Name of The	Computer P	Computer Programming			
Course	and Applications				
Course Code	DPCS2015				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
		3	0	0	3

Course Objectives

- 1. To create awareness and emphasize the need for the roll of computer in Engineering.
- 2. To give a general understanding on working of computer.

Course Outcomes

CO1	Discuss the basic terminology used in computer programming. K2
CO2	Develop compile and debug programs in C language. K4
CO3	Use different data types in a computer program. K3
CO4	Develop programs involving decision structures, loops and functions. K4
CO5	Explain the difference between call by value and call by reference and programming skill.

Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
20	30	50	100

Course Content:

Unit I: INTRODUCTION (Familiarization With Operating System): 5 Hours

(i) Review of performance, specifications of instruments, accuracy, precision, sensitivity, resolution range etc. Errors in measurement and loading effects.

Unit II:PROGRAMMING BASICS: :8 Hours
Introduction to computer Operating System
(Dos, Windows'95).? Introduction to Dos
structure, system files, batch files &
configuration files. Booting the system from
floppy & hard disk. Brief Introduction to Dos
internal & external commands.
Familiarization with windows structures, its

Unit III: ARRAYS AND STRINGS: 10 Hours

Arrays: Initialization – Declaration – One dimensional and two-dimensional arrays.

use and application.

String-: String operations – String Arrays.

Simple programs: sorting- searching – matrix operations.

Unit IV: FUNCTIONS AND POINTERS: 10 Hours

Function: definition of function – Declaration of function – Pass by value – Pass by reference – Recursion – Pointers: Definition – Initialization – Pointer's arithmetic – Pointers and arrays- Example Problems (Programs with user defined functions – Includes Parameter Passing)

Unit V: Digital Instruments 8 Hours

Introduction – need for structure data type – structure definition – Structure declaration – Union

Commercial and business data processing application. Engineering computation. CAD, CAM, CAE, CAI.

Suggested Reading

- 1. J.B. JUPTA, "Electrical and Electronic Measurements and Instruments"
- 2. A. K. Sawhney A course in Electrical & Electronic Measurement & Instrumentation Dhanpat Rai & Sons.

Name of The	Computer Pr	Computer Programming			
Course	and Applicati	and Applications Lab			
Course Code	DPCS2014				
Prerequisite					
Corequisite					
Anti-requisite					
	1	L	T	P	C
		0	0	2	1

Course Objectives: 1. Understand the dynamics of memory by the use of pointers.

2. Explain the difference between call by value and call by reference and programming skill

Course Outcomes

CO1	Develop compile and debug programs
	in C language
CO2	Use different data types in a computer
	program.
CO3	Develop programs involving decision
	structures, loops and functions

Text Book (s):1. B. RAM " Computer Fundamentals Architecture and Organization " New Age International

Reference Book (s): Henry Lucas " Information Technology for Management " Mcgraw-Hill College

Ex.1 Create database file Ex.2
Ex.2
C Programming using Simple statements and
expressions
Ex.3
Scientific problem-solving using decision
making and looping
Ex.4
Simple programming for one dimensional and
two-dimensional arrays.
Ex.5
Solving problems using String functions
Ex.6
Programs with user defined functions –
Includes Parameter Passing
Ex.7
Program using Recursive Function.
Ex.8
Program using structures and unions.

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
50	-	50	100

Name of The	Modern Con	nmu	nica	tion	1
Course	Systems				
Course Code	DPCO3002				
Prerequisite	DPCO2008				
Co-requisite					
Anti-requisite					
	1	L	T	P	C
		3	0	0	3

Course Objectives

- 1. Demonstrate understanding of various analog and digital modulation and demodulation techniques.
- 2. To enable the student to become familiar with satellites and satellite services.

Course Outcomes

	Discuss the basic ideas of
CO1	Communication System
001	Apply basic concept of fibre optical
CO2	system and optical communication
	Identify Digital communication like
CO3	sampling, modulation and error
	detection and correction capability
	Illustrate the basic concepts of Satellite
CO4	communication and ideas about
	different orbits.
CO5	Design and working principles of
	mobile communication.

Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
20	30	50	100

Course Content:

Unit I: INTRODUCTION TO

COMMUNICATION SYSTEM 3 Ho

3 Hour

Basic idea of telegraphy, telephonic, digital, microwave, fiber optics, satellite, mobile and data communication.

Unit II:OPTICAL COMMUNICATION AND DEVICES 8 Hours

- 2.1 Introduction: Block diagram of optical fiber communication system, advantages of optical communication
- 2.2 Optical Fiber: Structure of optical wave guide, light propagation in optical fiber, Ray and wave theory, Modes in optical fiber, Step and Graded index fibers
- 2.3 Transmission Characteristics of Optical Fibers: Signal degradation in optical fibers, Attenuation losses in optical fibers. Dispersion and pulse broadening in different types of fibers, Modal birefringence and polarization maintaining fibers.
- 2.4 Requirements for Photo detectors, Types of photo detectors, Characteristics of photo detectors. Principle of APD and Pin diodes. Phot transistor and Photo Conductors.
- 2.5 Components of an optical fiber communication system, Digital and Analog Optical Communication System.
- 2.6 Semiconductor Lasers Laser action, PN junction laser, Febry- Perot resonators.
- 2.7 Optical Detectors: Introduction,
 Photodiode- Material and types. Avalanche
 Photo Diode (APD), PIN diode, Temperature
 effect on avalanche gain, noise in APD.

Unit III: DIGITAL COMMUNICATION

10 Hours

- 3.1 Elements of Digital Communication and information theory: Model of a digital communication system, Logarithmic measure of information. Source coding fixed in and variable length code words. Hartley-Shannon law for channel.
- 3.2 Sampling Theory and Pulse Modulation: Sampling theorem, Signal reconstruction in time domain. Types of analog pulse modulation, Method of generation and detection of PWM, PNM and PPM.
- 3.3 Waveform Coding Technique:
 Quantization, Quantization noise, Encoding
 and Pulse code modulation, Differential pulse
 code modulation, Delta modulation,
 Comparison of PCM and DM.
- 3.4 Digital Multiplexing: Fundamentals of time division multiplexing electronic commutator.
- 3.5 Digital Modulation Techniques: Types of digital modulation, Wave forms for amplitude, Frequency and phase shift keying, Method of generation and detection of coherent and noncoherent binary ASK, FSK & PSK, Differential phase shift, Quadrature modulation techniques. (QPSK and MSK) Probability of error and comparison of various digital modulation techniques.

 3.6 Error Control Coding: Error free communication over a noisy channel, hamming sphere, hamming distance and Hamming bound, Relation between minimum distance and error detecting and correcting capability.

Unit IV: SATELLITE COMMUNICATION
10 Hours

- 4.1 Introduction, historical background and basic Concepts of satellite communication.
- Elements of satellite communication link.
- 4.2 Geostationary orbits, Orbit mechanisms and launching of satellite.
- 4.3 Satellite space craft- Satellite sub system, Tracking and Command, Communication subsystem, Transponders, Space Craft antenna.
- 4.4 Satellite Channel and Link Design: Design of down links and uplinks.
- 4.5 Multiple access techniques: Frequency
 Division Multiple Access (FDMA),
 FDM/FM/FMFDMA, Time division, Multiple
 Access, Frame Structure and Synchronization,
 Code division, Multiple Access, random
 Access.
- 4.6 Introduction to DTH system

Unit V: MOBILE COMMUNICATION 8 Hours

- 5.1 Evaluation of mobile communication, A simplified reference model for mobile communications.
- 5.2 A brief introduction of frequency for radio transmission, signals, propagation,

Multiplexing, Modulation, Spread spectrum, Cellular system.

5.3 Medium Access Control: Introduction To MAC, Advance Mobile Phone. Introduction to GSM (Global System for Mobile Communication), GPRS, GPS, Enable Positioning System.

Suggested Reading

- 1. J. Gowar Optical Communication PHI.
- 2. D. C. Agarwal Satellite Communication Khanna Pub.

Name of The	Modern Com	mur	nicat	ion	
Course	Systems Lab				
Course Code	DPCO3007				
Prerequisite					
Corequisite					
Anti-requisite					
		L	T	P	C
		0	0	2	1

Course Objectives: 1. Demonstrate understanding of various analog and digital modulation and demodulation techniques.

2. To enable the student to become familiar with satellites and satellite services.

Course Outcomes

CO1	Apply basic concept of fiber optical system and optical communication
CO2	Illustrate the basic concepts of Satellite
	communication and ideas about
	different orbits.
CO3	Identify Digital communication like
	sampling, modulation and error
	detection and correction capability

Text Book (s):1. J. Gowar - Optical

Communication - PHI.

Reference Book (s): D. C. Agarwal - Satellite

Communication - Khanna Pub

List of Experiments	
Ex.1	
To study the parts of telephone hand set:	
(a) Frequency response of telephone	

- (a) Frequency response of telephone receiver.
- (b) To observe the wave form of impulses by dialing a number.

Ex.2
Visit and study of Digital Switching System
Ex.3
Visit and study of Satellite transmission
system.
Ex.4
Demonstration of sampling, FSk and PSK by
simple experiment.
Ex.5
Demonstration of optical fiber communication
through simple kits.
Ex.6
Study of working of mobile phones and its
services.
Ex.7

Study and use of ISDN and Internet services

Testing and fault finding of mobile phone and

Continuous Assessment Pattern

Ex.8

its service.

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
50	-	50	100

Name of The Course	INDUSTRIAL ELECTRONICS AND TRANSDUCERS				
Course Code	DPCO3003				
Prerequisite	None				
Co-requisite					
Anti-requisite					
		L	T	P	C
		3	0	0	3

Course Objectives

- 1.Describe modern electronic devices available in industry e.g., thyristors, Inverters etc.
- 2.Discuss different types of heating
- 3.Explain single and three phase devices
- **4.** Sensing devices (sensors & Transducers) and optoelectronics

Course Outcomes

	Describe modern electronic devices
CO1	available in industry e.g., thyristors,
	Inverters etc.
CO2	Discuss different types of heating
CO3	Explain single and three phase devices
CO4	Examine sensing devices (sensors &
CO4	Transducers)
COS	Illustrate basic concepts of Opto-
CO5	electronic devices

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Exam	Exam	
	(MTE)	(ETE)	
20	30	50	100

Course Content:

Unit-I Thyristor family & its application 9 hours

1.1Name, symbol and typical applications of members of thyristor family.

1.2SCR, Triac and Diac-Basic structure, operation, V-I characteristics and ratings, gate circuits, ratings, triggering process and triggering circuits, turn off methods and circuits, selections of heat sinks, mounting of thyristor on heat sinks, basic idea of protection of thyristor circuits.

1.3Operation, V-I characteristics, equivalent circuit and parameters of an UJT: Description of UJT relaxation oscillator, use of UJT relaxation oscillator for triggering thyristors.

1.4Diac SCR and Triac switching circuits like automatic battery charger, voltage regulator, emergency light, alarm circuits, time delay relay circuits and circuits for over current and over voltage protection.

1.5 Single phase, various types of phasecontrolled rectifiers using SCR for resistive and inductive load explanation using wave shapes and appropriate mathematical equation (No derivation).

1.6 A.C. phase control using SCRs and triacs, Application of phase-controlled rectifiers and A.C. phase control circuits in illumination control, temperature control, variable speed drives using d.c. moters and small a.c. Machines

1.7Half wave, full wave (including bridge) poly phase rectifiers using SCRs; explanation using wave shapes and formula (no

derivation). Operation of three Phase Bridge controlled rectifier and its applications.

1.8Principle of operation of basic inverter circuits, basic series and parallel commutated inverters, principle of operation of cycloconverter, choppers and dual converter, mention of applications.

Project Based Learning: Comparison chart of thyristor family elements.

Unit II: PRINCIPLES AND APPLICATIONS OF INDUCTION AND DIELECTRIC HEATING 8 Hours

- 2.1Introduction, importance of heating in industry, 2.2Principle of induction heating
- 2.3Industrial applications of induction heating
- 2.4Principle of dielectric heating,
- 2.5Industrial applications of dielectric heating

Unit III: Sensors and Transducers
9 Hours

- 3.1Temperature and pressure sensors:
- 3.2Basic working Principle and application.
- 3.3Basic idea and principle of operation and their use in 3.4measuring physical parameters of the following types of transducers
- a. Variable Resistance Type Potentiometric
 Resistance strain gauge Displacement and force
- b. Variable Capacitance Type Displacement and pressure

Unit IV: Processing of Transducers Signals
4 Hours

4.1Characteristics of instrumentation amplifiers in respect of input impedance, output impedance, drift, dc offset, noise, gain common mode rejection, frequency response

4.2Relating the suitability of these characteristics for amplifying signals from various transducers.

Unit V: Optoelectronics devices

9 Hours

- 5.1Basic principle and characteristics of photo sources and photo detector, Photo resisters, photo diodes, photo transistors, photo electric cells, LCDs, LEDs and photo-couplers
- 5.2LED- Material, Construction, Working,
 Power & Efficiency, Characteristics and modulation BW. Laser, Semiconductor Laser.
 5.3Photo Detectors Optical detection
 Principles, P-N photodiode, Avalanche
 Photodiode
- 5.4Electro-Optic Effect- Integrated optical Devices, Magneto- Optic Effect, Acousto-Optic Effect
- 5.5Sensors & Display Devices Optical Fiber Sensors, Display Devices, LCD display, Numeric Display.

(Only Brief description of above)

Project Based Learning: Designing a working module using optoelectronics devices.

Suggested Reading

- 1.H. Rashid-" Power Electronics Circuits, Devices & Application"- P.H.I
- 2. C. S. Ranjan- "Instrumentation Devices & Systems"- Tata McGraw Hill.
- 3. Singh Jasprit "Optoelectronics an Introduction to Materials and Devices" McGraw-Hill

Name of The	INDUSTRIA	L			
Course	ELECTRONICS AND				
	TRANSDUC	ERS	LA	В	
Course Code	DPCO3008				
Prerequisite					
Corequisite					
Anti -requisite					
	•	L	T	P	C
		0	0	2	1

Course Objectives:

- 1. Use tools/test equipment to analyze electronic components.
- 2. Design basic electronic circuits.

Course Outcomes

	Describe modern electronic devices
CO1	available in industry e.g., thyristors,
	Inverters etc.
CO2	Explain single and three phase devices
CO3	Examine sensing devices (sensors &
	Transducers)
CO4	Illustrate basic concepts of Opto-
C04	electronic devices.

Course Content

Ex.1

Identification of various types of packages and terminals of various low and high-power thyristors (SCR and Triac).

Ex.2

To determine and plot firing characteristics of SCR: -

- (a) By varying the anode to cathode voltage.
- (b) By varying the gate current.

Ex.3

To observe that logic low and logic high of logic gate.

Ex.4

Observation of waveshapes at relevant points of the circuit of a single-phase controlled rectifier using SCR and UJT relaxation oscillator Observation of waveshapes at relevant points of the circuit of a single-phase controlled rectifier using SCR and UJT relaxation oscillator

Ex.5

To determine the firing characteristics of Triac in different mode i.e., Mode-I (plus), Mode-I (minus), Mode-III (plus), Mode-III (minus).

Ex.6

Observe the waveshapes and measure a.c. and d.c voltage at various points of a three-phase bridge rectifier circuit

Ex.7

Test an a.c. phase control circuit using triac and observe waveshapes and voltages at relevant points in circuit (while using for lamp intensity control and/or a.c. fan speed control).

Ex.8

To study the working of a single-phase SCR/ transistor inverter circuit by observing waveshapes at input and output.

Ex.9

To measure force and pressure by using strain gauge transducer.

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
50	-	50	100

Name of The	Microelectro	nics	-I		
Course					
Course Code	DPCO3004				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	T	P	C
		3	0	0	3

Course Objectives

- 1. Outline the progress made in the history of microelectronics.
- 2. Describe the evolution of microelectronics from point-to-point wiring through high element
- 3. Identify printed circuit boards, diodes, transistors, and the various types of integrated circuits.

Course Outcomes

CO1	Describe the properties of semiconductor and semiconductor
	devices. (k2)
	Illustrate theoretical and practical
CO2	aspects of IC fabrication technology.
	(k3)
	Analyze several fabrication steps such
CO3	as epitaxiEs, oxidation, chemical vapor
003	deposition, etching, ion implantation,
	metallization, lithography etc.(k4)

CO4	Explain the manufacturing methods and their underlying scientific principles in the context of technologies used in VLSI chip fabrication. (k2)
CO5	Describe typical packaging levels presently used for microelectronic systems.

Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
20	30	50	100

Unit I: INTRODUCTION	2 Hours
Importance of micro-electronics	s in modern
technology.	
Unit II:CRYSTAL PROPERTI	ES AND
GROWTH OF SEMICONDUC	TORS BULK
8 Hours	

- 2.1 Crystal Lattice
- 2.2 Periodic structures
- 2.3 Planes and directions
- 2.4 diamond and zinc-blende lattice.
- 2.5 Crystal Growth from Melt.
- 2.6 Zone Refining.
- 2.7 Wafer shaping, Cleaning and polishing.

Unit III: REVIEW OF SEMI-CONDUCTOR PROPERTIES 10 Hours

- 3.1 Nature of intrinsic Silicon
- 3.2 Doping

- 3.3 Electrical conductivity
- 3.4 p-n junction at zero reverse and formal bias
- 3.5 the diode equation
- 3.6 capacitance of p-n junction
- 3.7 electric field and break down voltage of pn junctions.
- 3.8 Energy band diagram of ideal MOS, Schottky barriers, Threshold voltage, Nonideal effects.

Unit IV: EPITAXIAL GROWTH 10 Hours

- 4.1 Lattice matching
- 4.2 Need for epitaxy
- 4.3 Vapor phase epitaxy
- 4.4 Liquid phase epitaxy
- 4.5 Molecular-Beam epitaxy
- 4.6 Silicon on insulators.

Unit V: OXIDATION & POLYSILICON

FILM DEPOSITION

8 Hours

- **5.1 Thermal oxidation**
- 5.2 Dielectric and Polysilicon deposition
- 5.3 Metallization
- 5.4 Basic processes of vacuum evaporation **Patterning techniques**
- 5.5 Metallization Application.

Suggested Reading

- 1. S. M Sze, Semiconductor Devices Physics and Technology, John Wiley & Son, Inc. 2nd edition, 2002
- 2. Donald A. Neamen, Semiconductor Physics and Devices Basic Principles, McGraw Hill, 3rd edition, 2003.

Name of The	Bio Medica	l Ele	ectro	onics	5
Course					
Course Code	DPCO3005				
Prerequisite	None				
Co-requisite					
Anti-requisite					
		L	T	P	C
		3	0	0	3

Course Objectives

- 1.Outline the diagnostic techniques in biomedical electronics
- 2. Describe the patient care and monitoring techniques
- 3. Identify the biotelemetry systems in biomedical instrumentation systems.
- 4. Respiratory system

Course Outcomes

CO1	Describe the classification of the transducers
CO2	Illustrate the sources of bio-electric potential
CO3	Analyze the cardiovascular measurement
CO4	Explain the respiratory system for biomedical instrumentation
CO5	Prosthetic devices
CO6	Modern biomedical electronics

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Exam	Exam	
	(MTE)	(ETE)	
50	-	50	100

Course Content:

Unit-I INTRODUCTION: TRANSDUCER & ELECTRODES 8 Hours

- 1.1 The age of biomedical and transducers principles.
- 1.2 Active& Passive transducers.
- 1.3 Electrodes: Electrode theory, Biopotential Electrodes.
- 1.4 Biochemical transducers, Reference Electrodes electrodes.
- 1.5 Electrodes: Electrode theory, Biopotential Electrodes.
- 1.6 Blood Gas Electrodes.

Unit II: BIOELECTRIC POTENTIALS CARDIOVASCULAR MEASUREMENT 8 Hours

- 2.1 Resting and action potentials
- 2.2The bioelectric potential-ECG, EEG
- 2.3 Electrocardiography ECG amplifiers, Electrodes and leads, ECG recorder
- 2.4 EGC system for stress testing,
- Continuous ECG recording.
- 2.5 Blood flow measurement
- 2.6 Heart sound measurements

Unit III: Respiratory System Diagnostic Techniques 8 Hours

- 3.1 Physiology of respiratory system,
- **Measurement of breathing mechanics**
- **3.2 Spirometer, Respiratory Therapy equipment : Inhalators ventilators and**
- respirators,
- 3.3 Humidifiers, Nebulizers and Aspirators
- 3.4 Ultrasonic Diagnosis Eco -
- Cardiography, Eco, Encephalography
- **3.5 Emission Computerized Tomography,** MRI.

3.6 Ophthalmic Scans, X-Ray and Radioisotope instrumentation, CAT Scan **Unit IV: Patient Care Monitoring & Bio** Telemen 4 Hours **4.1Elements of Intensive Care Monitoring Patient Monitoring** 4.2 Diagnosis, Pacemakers, Defibrillators 4.3 Telemetry for ECG measurement during exercise, For emergency patient monitoring **4.4 Current Safety of Medical Electronic Equipment Unit V: Other Prosthetic Devices 5 Hours 5.1 Prosthetic devices** 5.2Special aspects-Safety of Medical **Electronic Equipment** 5.3Shok hazards from Electrical equipment 5.4Hearing Aid, Myoelectric Arm

Suggested Reading

- Cornwell- Biomedical Instrumentation and Measurements-Prentice Hall (India)
- Biomedical Instrumentation and Measurements
 Paperback 2015 by Cromwell (Author)
- Introduction to Biomedical Technology by J. J. Karr & J. M. Brown, Pearson Publication.

•

Name of The	Field Visit an	d Pı	resei	ntati	on
Course					
Course Code	DPCO3009				
Prerequisite					
Corequisite					
Anti-requisite					
		L	T	P	C
		0	0	4	2

Course Objectives:

- 1. Industry visits sensitize students to the practical challenges that organizations face in the technical world.
- 2. It gives greater clarity about various technical concepts for students as they can practically see how these concepts are put into action.

Course Outcomes

CO1	discover the practical exposure to different testing facilities available in the Industries. (K4)
CO2	Test for Core concepts related with Automation. (K4)
CO3	Adapt the importance of working safety. (K6)
CO4	Identify the Current industry needs. (K3)
CO5	Make use of effective Communication both orally and in writing. (K3)

Text Book (s):1. Electronics Engineering Books

Ex.1
Introduction
Ex.2
About the process
Ex.3
Safety
Ex.4
Operation unit 1
Ex.5
Report Writing

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
50		50	100

Name of The	PROJECT-I	I			
Course					
Course Code	DPCO9999				
Prerequisite					
Corequisite					
Anti-requisite					
	•	L	T	P	C
		0	0	32	16

Course Objectives:1. This course will Increase practical knowledge of student.

Course Outcomes

CO1	Create a own data or implementation on previous data project.
CO2	Create model to exhibit project.
CO3	Understand basic concept of electronics & communication engineering from live project.
CO4	Describe presentation on project.
CO5	Explain their project.

Text Book (s):1. Electronics Engineering Books

Ex.1		
planning the project		
Ex.2		
creating the group to work on		
Ex.3		

prepare plan of project include report, Circuit
Design, drawing, ppt
Ex.4
creating model of project
Ex.5
final project report

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
50		50	100