

School of Computing Science and Engineering

Program: BCA

Scheme: 2018-2021

Curriculum

SEMESTER – I

S.	Course	Name of the Course	Assessment Pattern			Pattern			
No.	Code		L	T	P	C	IA	MTE	ETE
1	CSJP1001	Basic Japanese	2	0	0	2	20	50	100
2	SLBC1001	Basic English	0	0	4	2	20	50	100
3	BCAS1110	Discrete Mathematics	3	0	0	4	20	50	100
4	BCAS1120	Digital Computer Fundamentals	3	0	0	3	20	50	100
5	BCAS1130	Introduction to Information Technology	3	0	0	3	20	50	100
6	BCAS1140	Programming Essentials in C	3	0	0	3	20	50	100
7	BCAS1141	Programming Essentials in C Lab	0	0	2	1	50	-	50
8	BCAS1131	Information Technology Lab	0	0	2	1	50	-	50
		Total	14	0	8	19			

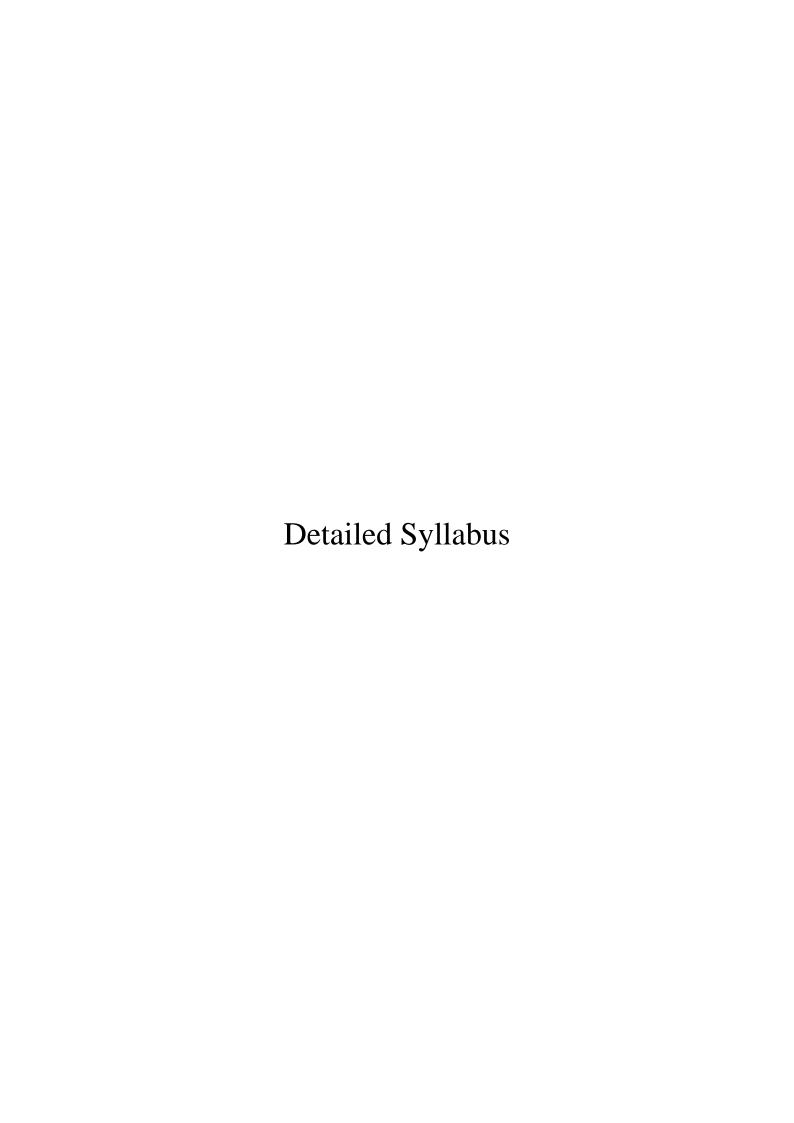
SEMESTER – II

S.	Course	Name of the Course	Assessment Pattern			Pattern			
No.	Code		L	T	P	C	IA	MTE	ETE
1	ENVS1001	Environmental Science	3	0	0	3	20	50	100
2	SLBC1002	Professional Communication	2	0	2	2	20	50	100
3	BCAS1008	Data Structures	3	0	0	3	20	50	100
4	BCAS1009	Web Technology	3	0	0	3	20	30	50
5	BCAS1007	Principle of Management	3	0	0	3	20	50	100
6	BCAS1010	Object Oriented Programming with C++	3	0	0	3	20	50	100
7	BCAS1011	Data Structures Lab	0	0	2	1	50	-	50
8	BCAS1012	Web Technology Lab	0	0	2	1	20	30	50
9	BCAS1013	Object Oriented Programming with C++	0	0	2	1	50	-	50
		Lab							
		Total	17	0	8	20			

SEMESTER – III

S.	Course	Name of the Course					Ass	Assessment Pattern		
No.	Code		L	T	P	C	IA	MTE	ETE	
1	BCAS2001	Computer Architecture	3	0	0	3	20	50	100	
2	BCAS2002	Database Management System	3	0	0	3	20	50	100	
3	BCAS2003	JAVA Programming	3	0	0	3	20	50	100	
4	BCAS2004	Introduction to Algorithm Analysis and	3	0	0	3	20	50	100	
		Design								
5	LLL223	Logical Skill Building	3	0	0	2	20	50	100	
6	BCAS2006	Enterprise Resource Planning	3	0	0	3	20	50	100	
7	BCAS2007	Computer Networking	3	0	0	3	20	50	100	
8	BCAS2008	Computer Networking Lab	0	0	2	1	50	-	50	
9	BCAS2009	Java Programming Lab	0	0	2	1	50	-	50	
10	BCAS2010	DBMS Lab	0	0	2	1	50	-	50	
		Total	21	0	6	23				

$\boldsymbol{SEMESTER-IV}$


S.	Course	Name of the Course					Ass	Assessment Pattern	
No.	Code		L	T	P	C	IA	MTE	ETE
1	BCAS2015	Operating System	3	0	0	3	20	50	100
2	BCAS2016	Software Engineering	3	0	0	3	20	50	100
3	BCAS2025	.Net technology	3	0	0	3	20	30	50
4	BCAS2021	Linux Administration	3	0	0	3	20	50	100
5	BCAS2013	Graph Theory	3	0	0	3	50	1	50
6	BCA9001	PE-1 - AI & ML	3	0	0	3	20	50	100
7	BCA9003	iOS, Android APP Development Lab	0	0	4	2	50	1	50
8	BCAS2026	.Net technology Lab	0	0	2	1	20	30	50
9	BCAS2022	Linux Administration Lab	0	0	2	1	50	1	50
10	BCA9002	PE-1- AI & ML using Python Lab	0	0	2	1	50	-	50
11	LLL245	Campus-to-Corporate	0	0	4	2	50	-	50
		Total	18	0	14	25			

$\boldsymbol{SEMESTER-V}$

S.	Course	Name of the Course	Assessment		Pattern				
No.	Code		L	T	P	C	IA	MTE	ETE
1	BCAS3002	Mobile Application Development	3	0	0	3	20	50	100
2	BCAS3003	Computer Graphics	3	0	0	3	20	50	100
3	BCAS3004	E-Commerce	3	0	0	3	20	50	100
4	BCAS3006	Software Project Management	3	0	0	3	20	50	100
5		Elective-II	3	0	0	3	20	50	100
6	BCAS3005	Computer Graphics Lab	0	0	2	1	50	-	50
7	BCAS3007	Mobile Application Development Lab	0	0	2	1	50	-	50
8		Elective II lab	0	0	2	1	50	-	50
9	BCAS9998	Project-I	0	0	8	4	50	-	50
		Total	15	0	14	22			

SEMESTER – VI

S.	Course	Name of the Course		Assessmen				essment	t Pattern	
No.	Code		L	T	P	C	IA	MTE	ETE	
1	BCAS9999	Project Work-2	0	3	30	15	50	-	50	
		Total	0	3	30	15				

Name of The Course	Basic Japanese				
Course Code	CSJP1001				
Prerequisite	NIL				
Corequisite					
Antirequisite					
		L	T	P	C
		2	0	0	2

- 1. This course attempts to give the students working knowledge of Japanese Language with emphasis on communicative competence.
- 2. This course will impart all the four skill viz. reading, writing, listening and speaking.
- 3. Basic Japanese sentences will be introduced and practiced.
- 4. Sufficient vocabulary will be given to the students to converse in a given situation such as, in a Coffee House, at the airport, in a restaurant and in the marketplace.
- 5. This course aims to give our students an interdisciplinary approach in order to compete with the globalized world.
- 6. This course will expose the students to a new culture and promote respect for the 'others' and inculcate tolerance.

Course Outcomes

CO1	Interpret simple sentences, and read short sentences and,paragraphs.(K3)
CO2	Apply simples sentences to discuss about their family members, friends etc.(K3)
CO3	Develop an understanding of Japanese society and culture.(K4)
CO4	Assess all the four skills viz. reading, writing, listening and speaking (K5)

Text Book (s):

- 1. Shokyuu Nihongo, Japanese Language Center for International Students, Tokyo University of Foreign Studies, Japan.
- 2. Minna-no Nihongo-1, 3A Corporation, Japan.
- 3. Nihongo Shoho, Japan Foundation, Japan.
- 4. Nihongo Kana nyuumon, Japan Foundation, Japan.

Reference Book (s):

- 1. Random House Japanese-English Dictionary
- 2. Japanese for Busy people, Video CD, AJALT, Japan.

Unit-1 Introduction	6 Hours	
Introduction to Japanese sound structure, Vowels and Consonants, pronunciation of two/three syllable words, and longer words Introduction to Hiragana and Katakana, Greetings, Set phrases	short and long vowels,	

Unit-2 6 Hours

Basic sentence structure (SOV)

Demonstrative pronoun, Kore, Sore, Are and Dore (This, That, That over there, which). Kono, sono, Ano and Dono (this, that, that over there, which) Kochira, Sochira, Achira and Dochira (this way....) Koko, Soko, Asoko and Doko (Here, There....location)

Unit-3 6 Hours

Numerals in Japanese, counting in Japanese

Adjectives- I and Na

Be-verbs (arimasu, imasu)

Telling time in Japanese

Names of months, dates,

Audio/ video clips

Class test

Unit-4 6 Hours

Desiderative sentences

Request sentences

Class room instructions in Japanese

Other useful expressions

Transitive and intransitive verbs

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Name of The Course	SLBC1001				
Course Code	Basic English				
Prerequisite					
Corequisite					
Antirequisite					
		L	T	P	C
		0	0	4	2

- 1. To expose students to communication challenges (verbal as well as non-verbal) in the professional environment
- 2. To define & interpret verbal and non-verbal messages
- 3. To express and present themselves effectively in business situations
- 4. To familiarize students with contemporary writing practices in the business environment

Course Outcomes

CO1	To understand importance & various concepts of effective business communication
CO2	To enable students to understand significance and interpretation of Nonverbal
	communication
CO3	To understand & execute the concept, principles and various situations in Group Discussion
	& how to handle them.
CO4	To prepare the students for job interviews.
CO5	To familiarize students with contemporary writing practices in the business environment

Text Book (s)

Meenakshi Raman, Prakash Singh, Business Communication, Oxford University Press

Course Content:

Unit-1: Professional Communication:

Purpose, Process & Classification of Communication, Barriers of Communication, 7Cs of Communication

Unit-2: Non-Verbal Communication:

Role of Non-Verbal Communication, Classification of Non-Verbal Communication, Guidelines for developing Non-Verbal Communication.

Unit-3: Written Communication:

Structure & Layout of Business letters, Type of Letters: Sales, Order, Complaint, Enquiry, Memo, Circular, Notice, etc.

Unit-4 : Spoken:

Introduction to Pronunciation, Group Discussion, Mock Interviews

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Name of The Course	Discrete Maths				
Course Code	BCAS1110				
Prerequisite					
Corequisite					
Antirequisite					
		L	T	P	C
		3	0	0	4

The objective of this course is to:

1. Teach the relevance of inference and algebraic theory to Computer Science Engineering problems.

Course Outcomes

CO1	Explain at high levels concepts and implement basic operations in discrete mathematics.
CO2	Perform combinatorial analysis to solve counting problems.
CO3	Develop mathematical models from computation theory to programming languages through
	combinatorics.
CO4	Use mathematical reasoning to comprehend and construct mathematical arguments, graphs.
CO5	Develop techniques for counting, permutations and combinations.

Text Book (s)

- 1. Seymour lipschutz, Marc Lars Lipson, Theory and Problems of Discrete Mathematics Third Edition, Schaum's Outline Series McGRAW-HILL.
- 2. B. Kolman, R.C. Busby, and S.C. Ross, Discrete Structures, PHI
- 3. Kenneth H. Rosen, Discrete Mathematics and Its Applications, McGraw-Hill

Reference Book (s)

- 1. Swapan Kumar Sarkar, A Textbook of Discrete Mathematics, S.Chand Publication
- 2. Jean Paul Trembley, R Manohar, Discrete Mathematical Structures with Application to Computer Science, McGraw-Hill
- 3. J.L. Mott, A. Kandelad T.P. Baker, Discrete Mathematics for Computer Scientists and Mathematicians, PHI, 2nd Edition, 1999.
- 4. Liu and Mohapatra, "Elements of Distcrete Mathematics", McGraw Hill

Unit-1: MATHEMATICAL LOGIC:	10 Hours
Introduction, Propositions, Connectives, Truth tables, Tautologies and Contractimplications, Normal forms, Methods of proof rules of inference for quantified proprinduction.	
Unit-2: COMBINATORICS	6 Hours

Basics of counting, Combinations of permutations, Enumeration of combination and permutation, Pigeonhole principle, Inclusion, Exclusion principle, Ordered and unordered portions.

Unit-3: RECURRENCE RELATIONS:

8 Hours

Generating function of sequences, Calculating coefficients of generating functions, Recurrence relations, solving recurrence relations by substitutious and generating functions, Method of characteristic roots, Solution of homogenous recurrence relations

Unit-4: GRAPH THEORY:

8 Hours

Basic concepts of graph theory, Diagraph, Paths, Reachability connectedness, Matrix representation of graphs, Subgraphs, Isomorphisms trees, Properties, Directed tress, Binary trees.

Unit-5: BOOLEAN ALGEBRA:

8 Hours

Post, Hasse diagrams, Lattices, Types of Lattices, Boolean Algebra, Basic theorems, Applications.

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Name of The Course	Digital Computer Fundamentals				
Course Code	BCAS1120				
Prerequisite					
Corequisite					
Antirequisite					
		L	T	P	C
		3	0	0	3

The purpose of this course is to provide digital computer fundamentals. The main goal of the course is to introduce students to the number system conversion from one base to another, to solve equations using Karnaugh map and Tabulation method, design circuits for binary adder, code converter, multiplexer, arithmetic circuits and accumulator.

Course Outcomes

CO1	Develop an understanding of the number system
CO2	Design the logic gates And solve K-maps Problems.
CO3	Understand the logics of Adder, Multiplexer and encoder-decoder.
CO4	Understand the Flip-flops and application of flip-flops
CO5	Understand Registers and Memory classification.

Text Books

1. M. Morris Mano – Digital Logic and Computer Design, 3rd Ed, PHI – 1994.

Reference Books

1 A.P. Malvino and D.P. Leach – Digital Principles and Applications – Fourth Edition – Tata McGraw Hill Edition – 1999.

Unit-1:	8 Hours
Introduction – Converting Numbers from One Base to Another – Complements	Binary Codes –
Integrated Circuits - Boolean Algebra - Properties of Boolean Algebra - Boo	olean Functions –
Canonical and Standard Forms.	
Unit-2:	8 Hours
Logic Gates - Karnaugh Map Up to 3 Variables - Don't Care Condition - Sun	n of Products and
Products of Sum Simplification.	
Unit-3:	8 Hours
Adder – Subtractor – Code Converter – Multilevel NAND and NOR Circuits – Bin	ary Parallel Adder
– Decimal Adder – Binary Multiplier-Binary Divider-Decoders – Encoder	 Multiplexers-
Demultiplexer.	_
Unit-4:	8 Hours
Flip Flops – Triggering of Flip Flops – Design of Counters –Ripple Counters.	
Unit-5:	8 Hours

Registers – Shift Registers – Memory Devices – Introduction, Classification of Memories , Basic Memory Structure , RAM, ROM, PLA.

	Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
ĺ	20	30	50	100

Name of The Course	INTRODUCTION TO INFORMATION TECHNO	DLO	GY		
Course Code	BCAS1130				
Prerequisite					
Corequisite					
Antirequisite					
	•	L	T	P	C
		3	0	0	3

The purpose of this course is to provide basic concepts of Information Technology, database management systems, spreadsheets, word processing, Networking and Multimedia.

Course Outcomes

CO1	Understand the basics of Information System and GPS
CO2	Understand about Computer System, CPU, Microprocessor and I/O.
CO3	Learn about the I/O Devices and storage Media.
CO4	Understand about the Software, word processing, spreadsheets and database Application.
CO5	Understand the Network Application, Tools of multimedia.

Text Book (s)

1. D.P. Curtin, K. Foley, K. Sen and C. Morin, Information Technology – The Breaking Wave, TMH Edition – 1999.

Reference Book (s)

- 1 Sawyer, Williams and Hutchinson, Using Information Technology Brief Version, McGraw Hill International Edition 2003.
- **2** Fundamentals of Information Technology, Alexis Leon & Mathews Leon–Vikas Publishing House Pvt. Ltd. 1999.

Unit-1: Introduction	8 Hours
IT an Introduction – Information Systems – Software and Data – IT in Business, I	ndustry, Home, at
Play, Education, Training, Entertainment, Arts, Science, Engineering and Mathe	s – Computers in
Hiding – Global Positioning System (GPS).	
Unit-2: Technology	8 Hours
Types of Computers – Anatomy of a Computer – Foundations of Modern Information	ion Technology –
	ion reemiology
The Central Processing Unit – How Microprocessors and Memory Chips are M.	
The Central Processing Unit – How Microprocessors and Memory Chips are M. Buses for Input and Output – Communication With Peripherals.	
	

I/O Devices – Inputting Text and Graphics – State of the Art – Input and Output – Pointing Devices – Foundations of Modern Output – Display Screens – Printers – Foundations of Modern Storage – Storage Media – Increasing Data Storage Capacity – Backing up your Data – The Smart Card.

Unit-4: Interfaces 8 Hours

Software – User Interfaces – Application Programs – Operating Systems – Document – Centric Computing – Major Software Issues – Network Computing – Word Processing and Desktop Publishing – Spreadsheet and Database Applications.

Unit-5: Networks 8 Hours

Network Applications – Foundation of Modem Networks – Local Area Networks – Wide Area Networks – Links Between Networks – Networks: Dial–up Access – High Bandwidth Personal Connections – Multimedia – Tools of Multimedia – Delivering Multimedia – Multimedia on Web.

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Name of The Course	Programming Essentials in C				
Course Code	BCAS1140				
Prerequisite					
Corequisite					
Antirequisite					
		L	T	P	C
		3	0	0	3

The objective of this course is to introduce the students to the concepts of C programming with emphasis on the following topics Functions, Arrays, Pointers, Structures, Files. This course fully covers the basics of programming in C language and demonstrates fundamental programming techniques, customs and vocabulary including the most common library functions and the usage of the pre-processor.

Course Outcomes

CO1	Understand the working and architecture of 'C'
CO2	Understand when and how to take decisions, to compare and iterate, to simplify the
	problems.
CO3	Students should be able to implement syntax and logics for development according to user
	account, implement algorithmic solutions in a programming language.
CO4	Solve problems of limited scope by writing programs using the concepts taught.
CO5	To allow the student to write their own programs using standard language infrastructure
	regardless of the hardware or software platform.

Text Books

1. B.S. Gottfried - Programming With C - Schaum's Outline Series - Tata McGraw Hill 2nd Edition - 2004.

Reference Books

- 1. E. Balagurusamy Programming in ANSI C Second Edition Tata McGraw Hill- 1999
- 2. Brian W. Kernighan and Dennis M. Ritchie, The C programming Language, Prentice-Hall in 1988
- 3. Infosys Foundation program, Volume 1

Unit-1: Introduction	8 Hours	
Identifiers - Keywords- Data Types - Access Modifiers - Data Type Conversions - Operators		
Conditional Controls - Loop Controls- Input / Output Operations - Character Test	Functions.	
Unit-2 : Arrays	8 Hours	
Arrays - One Dimensional Arrays - Two Dimensional Arrays - Multi Dimensional		
Handling of Character Strings - String - Handling Functions - Table of Strings - er	•	
Unit-3: Functions	8 Hours	
User Defined Functions - Need for User Defined Functions - Category of Functions	tions - Nesting of	
Functions - Recursion - Functions with Arrays - Storage Classes - Macros and Pre	processors.	
Unit-4: Structures	8 Hours	
Structures - Array of Structures - Arrays within Structures - Structures within Structures	ctures - Structures	
and Functions - Unions - Size of Structures.		

Unit-5 : Pointers 81	Hours
----------------------	-------

Pointers - Pointer Variables - Passing Pointers to Functions - Pointers and One Dimensional Array - Dynamic Memory Allocation - Pointers and Multi Dimensional Arrays - Arrays of Pointers - Pointers to Structures – Data files - Opening and Closing a Data file - Creating a Data file - Processing a Data file - Unformated Data file.

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Name of The Course	Environment Science				
Course Code	ENVS 1001				
Prerequisite					
Corequisite					
Antirequisite					
		L	T	P	C
		3	0	0	3

The objective of this course is to:

- 1. Introduce the fundamentals and abstract concepts of environment studies.
- 2. Learn how concepts of social issues and the environment studies are useful in realistic problem solving.

Course Outcomes

CO1	Students will understand the need for eco-balance
CO2	Also, Knowledge on the method of pollution prevention
CO3	Understand the knowledge of Environmental Pollution
CO4	Demonstrate Social Issues and the Environment
CO5	Students able to understand Human Population and the Environment

Text Book (s)

1. Kurian Joseph & R. Nagendran, "Essentials of Environmental Studies", 1st Edition , Pearson Education, 2004.

Reference Book (s)

- 1. Keerthinarayana & Daniel Yesudian, "Environmental Science and Engineering", 1st Edition, Hi-Tech publications, 2004.
- 2. Erach Bharucha, "A Text Book for Environmental Studies", Text Book of University Grants Commission, 2004.
- 3.Metcalf & Eddy,"Wastewater Engineering: Treatment and Reuse", New Delhi, TMH

Course Content:

Unit-1: Environment & Natural Resources	8 Hours
Definition, scope, importance, need for public, Natural Resources – forest exploitation, deforestation, construction of multipurpose dams – effect on forests, use of surface and subsurface water; effect of floods, drought, water conflicts, food problems, advantage and disadvantage of fertilizers & pesticides, effect on env resources – need to develop renewable energy, land resources – Land degradation erosion, desertification & case studies.	Water resources – d resources – food ironment, Energy
Unit-2 : Ecology & Bio-Diversity	8 Hours

Concept of ecosystem, structure & function of an ecosystem, producers, consumers and decomposers, energy flow, ecological succession, food chains, food webs and ecological pyramids. Bio diversity: Definition, genetic, species and ecosystem diversity, bio-geographical classification of India,

hotspots, threats related to habitat loss, poaching of wildlife, man-wildlife conflicts, Conservation of bio-diversity.

Unit-3: Environmental Pollution

8 Hours

Definition – Causes, pollution effects and control measures of Air, Water, Soil, Marine, Noise, Thermal, Nuclear hazards. Solid `waste management: causes, effects and control measures of urban and industrial wastes, pollution measures, case studies, Disaster management: floods, earthquake, cyclone and landslides.

Unit-4: Social Issues and the Environment

8 Hours

Urban problems related to energy & sustainable development, water conservation, rain water harvesting, watershed management, problems related to rehabilitation – case studies, Wasteland reclamation, Consumerism and waste products - Environment Protection Act, Air, Water, Wildlife, Forest Conservation Act, Environmental legislation and public awareness.

Unit-5: Human Population and the Environment

8 Hours

Population growth, variation among nations, Population explosion – Family Welfare Programme, Environment and human health, Human Rights, Value Education, HIV/ AIDS, Women and Child Welfare, Role of Information Technology – Visit to local polluted site / Case Studies.

Internal Assessment	Mid Term Exam	End Term Exam	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Professional Communication				
Course Code	SLBC1002				
Prerequisite					
Corequisite					
Antirequisite					
		L	T	P	C
		0	0	4	2

The objective of this course is to:

- 1. Make students understand that both oral & written communications are equally important.
- 2. The students should be comfortable with both verbal & written communication.

Course Outcomes

CO1	Students understand the value of business communication, written & presentation skills in professional life.
CO2	Students should be well equipped with business & written communication with effective presentation skills.
CO3	Students understand the Forms of Technical Communication
CO4	Students able to understand presentation strategies
CO5	Understand the fundamentals of human relations

Text Book (s)

- 1 Improve Your Writing ed. V.N. Arora and Laxmi Chandra, Oxford Univ. Press, New Delhi .
- 2 Technical Communication Principles and Practices by Meenakshi Raman & Sangeeta Sharma, Oxford Univ. Press 2007, New Delhi.

Reference Book (s)

- 1 Effective Technical Communication by Barun K. Mitra, Oxford Univ. Press, 2006, New Delhi
- 2 Business Correspondence and Report Writing by Prof. R.C. Sharma & Krishna Mohan, Tata McGraw Hill & Co. Ltd., New Delhi.
- 3 How to Build Better Vocabulary by M.Rosen Blum, Bloomsbury Pub. London.
- 4 Word Power Made Easy by Norman Lewis, W.R.Goyal Pub. & Distributors; Delhi.
- 5 Developing Communication Skills by Krishna Mohan, Meera Banerji- Macmillan India Ltd. Delhi
- 6 Manual of Practical Communication by L.U.B. Pandey & R.P. Singh; A.I.T.B.S. Publications India Ltd.; Krishan Nagar, Delhi.

Unit-1: Basics of Technical Communication	8 Hours
Technical Communication: features; Distinction between General and Technical communication Language as a tool of communication; Levels of communication: Interpersonal, Organizational, Mass communication; The flow of Communication: Downward, Upward, Lateral or Horizontal (Peegroup); Importance of technical communication; Barriers to Communication.	
	T
Unit-2: Constituents of Technical Written Communication	8 Hours
Words and Phrases: Word formation. Synonyms and Antonyms; Homophones; Se	lect vocabulary of
about 500-1000 New words; Requisites of Sentence Construction: Paragraphic	ph Development:

Techniques and Methods -Inductive, Deductive, Spatial, Linear, Chronological etc; The Art of Condensation- various steps.

Unit-3: Forms of Technical Communication

8 Hours

Business Letters: Sales and Credit letters; Letter of Enquiry; Letter of Quotation, Order, Claim and Adjustment Letters; Job application and Resumes. Official Letters: D.O. Letters; Govt. Letters, Letters to Authorities etc. Reports: Types; Significance; Structure, Style & Writing of Reports. Technical Proposal; Parts; Types; Writing of Proposal; Significance. Technical Paper, Project. Dissertation and Thesis Writing: Features, Methods & Writing.

Unit-4: Presentation Strategies

8 Hours

Defining Purpose; Audience & Locale; Organizing Contents; Preparing Outline; Audio-visual Aids; Nuances of Delivery; Body Language; Space; Setting Nuances of Voice Dynamics; Time-Dimension.

Unit-5: Fundamentals of Human Relations:

8 Hours

Intra-personal, Interpersonal and Group Relationships, Transactional Analysis Implications for Managers in Organizational Context. Formal Written Communication: Official Letters, Report, Writing: Categories Formats, Memorandums and Circulars, Agenda and Minutes, Resume, Drafting Advertisements. Enquires and Replies, Quotations, Voluntary Offers, Placing of Order, Cancellation of Order, Complains and Adjustments. Formal Verbal Communication: Group Discussion, Interview, Extempore, Business Negotiation, Public Speaking, Meeting, Toasting, Counselling, Business Presentation. Negotional Skills. Social Skills for Managers: Update of Etiquettes a Manager should observe in Various Formal and Informal Situations; The Knowledge of Body Language.

Internal Assessment	Mid Term Exam	End Term Exam	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Data Structures				
Course Code	BCAS1008				
Prerequisite					
Corequisite					
Antirequisite					
		L	T	P	C
		3	0	0	3

The objective of this course is to:

- 1. Introduce the fundamentals and abstract concepts of Data Structures.
- 2. Introduce searching, sorting techniques
- 3. Learn how concepts of data structures are useful in problem solving.

Course Outcomes

CO1	Use and implement appropriate data structure for the required problems using a
	programming language such asC/C++.
CO2	Analyze step by step and develop algorithms to solve real world problems.
CO3	Implementing various data structures viz. Stacks, Queues, Linked Lists, Trees and Graphs.
CO4	Understand various searching & sorting techniques.
CO5	Use and implement appropriate data structure for the required problems using a
	programming language such asC/C++.

Text Book (s)

- 1. Data Structures: By Seymour Lipschutz, Tata Mcgraw-Hill Publication.
- 2. Data Structure and algorithm using C:By R.S.Salaria-Khanna Publication.
- 3. Horowitz and Sahani, "Fundamentals of Data Structures", Galgotia Publication

Reference Book (s)

- 1 Aaron M. Tenenbaum, Yedidyah Langsam and Moshe J. Augenstein "Data Structures Using C and C++", PHI
- 2 Jean Paul Trembley and Paul G. Sorenson, "An Introduction to Data Structures with applications", McGraw Hill
- 3 R. Kruse etal, "Data Structures and Program Design in C", Pearson Education
- 4 Lipschutz, "Data Structures" Schaum's Outline Series, TMH
- 5 G A V Pai, "Data Structures and Algorithms", TMH

Course Content:

Unit-1: Introduction to Data Structure Introduction, Basic Terminology: Data and information, ADT, Data Organization and types of Data Structure. Unit-2: Arrays Representation of Linear Arrays, Types of Arrays: 1D,2D & M-D Concept, Sorting & Searching Algorithms-Bubble, Selection, Merge, Quicksort, linear and binary search. Type of Memory Allocations

Unit-3: Linked List	8 Hours
---------------------	---------

Concept of Linked List, Representation of linked List in memory, Memory Allocation, Garbage Collection, Overflow and Underflow, Traversing a linked list, Searching a linked list, Insertion & Deletion in Linked List, More types of linked list: Header Linked List, Two way List and Circular linked list.

Unit-4: Stacks, Queues, Recursion

8 Hours

Concepts of Stack, Operation on Stack, Array Representation of Stack, Arithmetic Expression POLISH Notation, Concepts of Queue, Operation on Queue, Representation of queues, Other types of queue: Priority Queues, Deque and Circular queue. Recursion: factorial number, Fibonacci series and Tower of Honai

Unit-5: Introduction of Trees and Graph

8 Hours

Introduction of Trees – Binary Trees – Binary Search Trees. Types of Graph

Internal Assessment	Mid Term Exam	End Term Exam	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Web Technology				
Course Code	BCAS1009				
Prerequisite					
Corequisite					
Antirequisite					
		L	T	P	C
		3	0	0	3

The objective of this course is to:

The student will gain knowledge behind the concepts of Web Designing as a whole and the technologies that constitute its development. By building sample applications, the student will get experience and be ready for large-scale projects.

Course Outcomes

CO1	The student will gain programming skills both in basic and advanced levels.
CO2	Demonstrate the knowledge and able to apply the design principles, techniques and technologies to the development of creative websites.
CO3	Demonstrate the concept of VBScript
CO4	Applications of ASP
CO5	Understand the concept of database system and file system

Text Book (s)

Web Design: A Complete Introduction by Nigel Chapman and Jenny Chapman. John Wiley & Sons, 2006

Reference Book (s)

- HTML 4.0, No Experience required E. Stephen Macj, J. Platt (bpb) 1
- Completer Reference HTML Thomas A. Powell (TMH)
- 3 Dynamic HTML in action Michele Petrovisjy (TMH)
- Unleashed HTML (Techmedia SAMS)

Unit-1: Introduction and HTML

Course Content:

Basic web designing: Introduction to web browser, architecture of web browser, web page, static & dynamic web pages, home page, web-site, Web-servers & clients, www. Introduction to HTML: History, structure of HTML document, creating & executing HTML. Tags of HTML, Creating Lists & Links, Creating Bookmarks, Image tags, Tables and Frames tags. Forms and CSS: Understanding

8 Hours

Form, <FORM> tag, creating text boxes, buttons, checkboxes, radio buttons, hidden control, password, lists & dropdown list, textarea. Submitting a form, get & post method. Creating CSS, applying CSS to HTML documents. Use of <META> Tag.

Unit-2: JavaScript	8 Hours
Chit-4 . Havanchibi	

JavaScript: Introduction: Scripting Language, The Use of JavaScript, Using Javascript in an HTML document, <SCRIPT> Tag. Overview of Javascript Programming: Variable, Scope of variables,

number & string, Operators Statements: if-else, for, while, break, continue, for-in, new, return. Arrays, JavaScript Functions & Objects, Document Object Model (DOM), Hierarchy of objects. Properties & Methods of Objects, Event Handling & Form Validation.

Unit-3: VBScript 8 Hours

Introduction, VBScript Statements and loops, Arrays, VBScript objects, VBScript layout statements, error handling, adding objects, Forms, Controls & managing transactions, VBScript event programming, Procedures & Functions

Unit-4: ASP 8 Hours

Introduction, Variables, Data types of ASP, Statements, Request & Response Objects: Response Object - buffering page, page caching, Request Object - QueryString collection, form collection, server-variables collection, working with HTML forms, retrieving form data suing text boxes, textareas, buttons, checkboxes, select lists. Form validation, Session & Application Object.

Unit-5: Database and File system

8 Hours

ASP with Databases: Connection and data sources, creating connections with OLEDB and ODBC, connecting to SQL server with OLEDB and ODBC, connection to MS-Access, Executing SQL statements. Working with Record set, File System Object(FSO), Folder object.

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
()	()	()	100
20	30	50	100

Name of The Course	Principle of Management				
Course Code	BCAS1007				
Prerequisite					
Corequisite					
Antirequisite					
		L	T	P	C
		3	0	0	3

The objective of this course is to:

1. provide a basis of understanding to the students with reference to working of business organization through the process of management

Course Outcomes

At the end of the course student will be able to:

CO1	Student will understand the basic principles of management - will acquaint himself with
	management process, functions and principles.
CO2	Student will also get the idea about new developments in management
CO3	Understand functions of management- part-I
CO4	Understand functions of management- part-II
CO5	Understand strategic management and recent trends in management

Text Book (s)

1. Essential of Management - Horold Koontz and Iteinz Weibrich -McGrawhills International

Reference Book (s)

- 1. Management Theory & Practice J.N.Chandan.
- 2. Essential of Business Administration K.Aswathapa Himalaya Publishing House
- 3. Principles & practice of management- Dr. L.M.Parasad, Sultan Chand & Sons-New Delhi
- 4. Business Organization & Management Dr. Y.K. Bhushan.
- 5. Management: Concept and Strategies by J. S. Chandan, Vikas Publishing.
- 6. Principles of Management by Tripathi, Reddy Tata McGraw Hill

Unit-1: Nature of Management	8 Hours	
Meaning, Definition, its nature purpose, importance & Functions, Management as Art, Science &		
Profession- Management as social System Concepts of management-Administration-Organization		
Unit-2: Evolution of Management Thought	8 Hours	
Contribution of F.W.Taylor, Henri Fayol, Elton Mayo, Chester Barhard & Peter management thought. Various approaches to management (i.e. Schools thought)Indian Management Thought		
Unit-3: Functions of Management- Part-I	8 Hours	

Planning - Meaning - Need & Importance, types levels - advantages & limitations. Forecasting - Need & Techniques Decision making - Types - Process of rational decision making & techniques of decision making Organizing - Elements of organizing & processes Types of organizations, Delegation of authority - Need, difficulties in delegation - Decentralization Staffing - Meaning & Importance Direction - Nature - Principles Communication - Types & Importance Motivation - Importance - theories Leadership - Meaning - styles, qualities & functions of leaders .

Unit-4: Functions of Management- Part-II

8 Hours

Controlling-Need, Nature, importance, Process & Techniques, Coordination - Need - Importance

Unit-5: Strategic Management and Recent Trends in Management

8 Hours

Strategic Management :Definition, Classes of Decisions, Levels of Decision, Strategy, Role of different Strategist, Relevance of Strategic Management and its Benefits, Strategic Management in India

Recent Trends in Management: Social Responsibility of Management – environment friendly management, Management of Change, Management of Crisis , Total Quality Management Stress Management, International Management

Internal Assessment	Mid Term Exam	End Term Exam	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Object Oriented Programming With C++				
Course Code	BCAS1010				
Prerequisite					
Corequisite					
Antirequisite					
		L	T	P	C
		3	0	0	3

- 1. Introduce the fundamentals and abstract concepts of object oriented programming.
- 2. Introduce basic features of object oriented programming such as data hiding, operator overloading, inheritance are given emphasis
- 3. Learn how concepts of object oriented are useful in problem solving using C++.

Course Outcomes

CO1	Use and implement appropriate technique for the required problems using C++.	
CO2	Analyze step by step and develop programs to solve real world problems.	
CO3	Implementing various problems, which involve object orientation using C++.	
CO4	Demonstrate the concept of class in C++.	
CO5	Understand the concept of I/O streams in C++.	

Text Book (s)

- 1. Herbert Schildt, C++ The Complete Reference, Third Edition -Tata McGraw Hill 1999.
- 2. Bruce Eckel, Thinking in C++, Second Edition, Volume One, Pearson Education Asia, 2000.

Reference Book (s)

- 1. Object Oriented Programming in C++ by Robert Lafore Technedia Publication.
- 2. The complete reference C by Herbert shieldt Tata McGraw Hill Publication.
- 3. Object Oriented Programming in C++ Saurav Sahay Oxford University Press.
- 4. Object Oriented Programming in C++ R Rajaram New Age International Publishers 2nd.
- 5. OOPS C++ Big C++ Cay Horstmann Wiley Publication.

Course Content:

Unit-1 : Introduction: Basic Terminology	8 Hours		
Introduction to OOP- Overview of C++ - Classes - Structures - Union - F	riend Functions - Friend		
Classes - Inline Functions - Constructors - Destructors - Static Members - Sc	ope Resolution Operator.		
Unit-2: POINTERS	8 Hours		
Array of Objects - Pointer to Object - This Pointer - References - Dynamic Memory Allocation -			
Function Overloading - Default Arguments - Overloading Constructors.			
Unit-3: OPERATORS	8 Hours		
Operator Overloading - Member Operator Function - Friend Operator Function	ion - Inheritance - Types		

Operator Overloading - Member Operator Function - Friend Operator Function - Inheritance - Types of Inheritance - Protected Members - Virtual Base Class - Polymorphism - Virtual Functions - Pure Virtual Functions.

Unit-4: CLASS	8 Hours			
Class Templates and Generic Classes - Function Templates and Generic Functions - Overloading a				
Function Template - Exception Handling - Namespaces.				
Unit-5: I/O STREAMS 8 Hours				
I/O Streams - Formations I/O with ios Class Functions and Manipulators - Overloa	ading - File I/O.			

Internal Assessment	Mid Term Exam	End Term Exam	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	COMPUTER ARCHITECTURE				
Course Code	BCAS2001				
Prerequisite					
Corequisite					
Antirequisite					
		L	T	P	C
		3	0	0	3

To introduce students to the different functional units of a computer system and to describe the various concepts of the same.

Course Outcomes

CO1	understand the concepts of arithmetic operations on integer & decimal data, the input-		
	output process and memory management.		
CO2	Be familiar with the Von Neumann architecture		
CO3	Be familiar with the cost-performance issues and design trade-offs in designing and		
	constructing a computer processor including memory		
CO4	Be familiar with the basic knowledge the design of digital logic circuits and apply to		
	computer organization		
CO5	understand the concepts of arithmetic operations on integer & decimal data, the input-		
	output process and memory management.		

Text Book (s)

1 M. M. Mano – Computer System Architecture – 3rd Edition – PHI – 1994.

Reference Book (s)

- 1. Subrata Ghoshal-Computer Architecture and Organization-First Impression-Pearson-2011
- 2. J. P. Hayes Computer Architecture and Organization McGraw–Hill 1988 3rd Edition.

Unit-1: Register Transfer and Microoperations	9 Hours			
Register Transfer Language-Register Transfer-Bus and Memory Tra	nsfers-Arithmetic			
Microoperations-Logic Microoperations-Shift Microoperations-Arithmetic Logic	Shift Unit-Basic			
Computer organization and design-Instruction Codes-Computer Registers-Comp	outer Instructions-			
Timing and Control- Instruction Cycle- Memory Reference Instructions-Input Out	put and Interrupt-			
Complete Computer Description-Design of Basic Computer-Design of Accumulat	or Logic			
Unit-2: Central Processing Unit	8 Hours			
Introduction-General Register Organization-Stack organization, Instruction Fo.	rmat, Addressing			
Modes-Data Transfer and Manipulation-Program Control.	Modes-Data Transfer and Manipulation-Program Control.			
Unit-3: Computer Arithmetic	8 Hours			
Computer Arithmetic – Addition and Subtraction – Multiplication and Division Algorithms –				
Floating-Point and decimal Arithmetic operations				
,				
Unit-4: Input-Output Organization	7 Hours			

Input-Output Organization – Peripheral devices – I/O Interface – Asynchronou Modes of Transfer – Direct Memory – Access I/O Processor	s Data Transfer –		
Unit-5: Memory Organization 8 Hours			
Memory Hierarchy – Associative Memory- Cache Memory - Virtual Memory.			

	nternal Assessment [A)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
2	0	30	50	100

Name of The Course	Database Management System				
Course Code	BCAS2002				
Prerequisite					
Corequisite					
Antirequisite					
		L	T	P	C
		3	0	0	3

The objective of this course is to:

- 1. Explain data management and the use of various techniques in the manipulation of data subject to various constraints.
- 2. Describe the entity relationship diagram and to explain the basic concepts of database recovery, concurrency control, security and integrity.

Course Outcomes

CO1	Identify data relationships and to design relational database tables adopting the normalization rules.
CO2	Students able to understand E-R Modeling.
CO3	Be familiar with the concept of Normalization.
CO4	Understand the concept of Data Models.
CO5	Be familiar with the concept of Back Up & Recovery.

Text Book (s)

1. Henry F. Korth and Abraham Silberschatz: Database system concepts, McGraw Hill International Publication, 1988 (Chapters 1 to 6 and 9 to 13), 2nd Edition,1991.

Reference Book (s)

- 1. Jeffrey D Ullman: Principles of data Base systems, Galgotia Publishers, 2nd Edition 1994.
- 2. C.J. Date, An Introduction to database Systems, Third Ed., Narosa 3rd Edition 1995.

Unit-1 : Introduction: Basic Terminology	8 Hours		
Introduction: Purpose of Database systems - overall system structure – Data Model			
Unit-2: E-R Modeling	8 Hours		
Entity relationship model: entities and entity sets relationships - mappings constrain	ints - primary keys		
- E.R diagram.			
Unit-3: Normalization	8 Hours		
Relational database design: pitfalls – Normal Forms - 1 NF, 2NF 3NF and BCNF	7		
Unit-4: Data Models 8 Hours			
Basic concepts of Hierarchical data model – Tree structure diagram, Network Data Model-Data			
Structure diagram.			

Unit-5: Back Up & Recovery	8 Hours
Basic concepts of database recovery -concurrency control - Database security and	integrity

Internal Assessment	Mid Term Exam	End Term Exam	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	JAVA Programming				
Course Code	BCAS2003				
Prerequisite					
Corequisite					
Antirequisite					
		L	T	P	C
		3	0	0	3

The objective of this course is to:

Introduce students Core Java Concepts and to teach students the basic concepts of Java programming. This course covers preliminaries, I/O streaming and file handling and teach students how to program applets in Java, networking and allow the students to implement effectively.

Course Outcomes

CO1	Implement and use efficiently the java programs, can develop applets, able to access
	database with JDBC, work with networking protocols using java with attractive GUI.
CO2	Understand the concept of Control Statements in JAVA
CO3	Be familiar with string's in JAVA
CO4	Understand Exception Handling in JAVA
CO5	Understand IO Package in JAVA

Text Book (s)

1. R. Naughton and H. Schildt – Java2 (The Complete Reference) – Fifth Edition – TMH – 2004.

Reference Book (s)

- 1. K. Arnold and J. Gosling The Java Programming Language $3^{\rm rd}\,$ Edition., Pearson Edu, 2005
- 2. David Flanagan Java in a Nutshell: A Desktop Quick Reference for Java Programmers–O'Reilly & Associates, Inc. 1999
- 3. Bruce Eckel Thinking in Java Prentice Hall, 2nd Ed 2002.

Course Content:

Unit-1: Introduction	8 Hours
Introduction - Object oriented fundamentals, History-Java and the Internet-J	Java Applets and
Applications, Features of Java, Java Virtual Machine (JMV), Byte-Code ,JAVA b	ouzzwords, JAVA
Environments, Command Line Arguments, Java program structure, Reserved key	words, Identifiers,
Literals, Operators, Separators, Variables, Declaring a variable, Scope and lifetime	of variables, Data
types, Type conversion, casting	

Unit-2: Control Statements

8 Hours

Control Statements, Arrays- One-Dimensional Arrays, Two-dimension Array, Vectors, Operators-Arithmetic, Boolean logical, Relational and Bitwise operators-Operator Precedence. Class: Fundamentals, The General Form of a Class, A Simple Declaring Objects, Assigning Object Reference Variables, Methods: Overloading Methods, Using Objects as Parameters, A Closer Look at Argument Passing, Returning Objects, Recursion Introducing Access Control, Overriding

Methods, Final Variables and Methods, Final class, Finalizer Methods, Abstract Methods and Class, Visibility Control, Constructors

Unit-3: String 8 Hours

String: Strings, String Constructors, String length, String Literals, String Concatenation, data types-String conversion. Inheritance: basic ,Types of Inheritance, Member Access, Creating a Multilevel Hierarchy, When Constructors Are Called Method Overriding, Why Overridden Methods?, Abstract Classes, Using final with Inheritance, Using final to Prevent Overriding. Using final to Prevent Inheritance, Packages and Interfaces.

Unit-4: Exception Handling

8 Hours

Exception Handling: Exceptions Exception hierarchy, Try, Catch, Finally, Throw.

Unit-5: IO Package

8 Hours

Java.io Package-I/O Basics-Reading console Input-Writing console output Print Writer class-Reading and Writing files-Java I/O classes, Byte Stream Classes, Character Stream.

Internal Assessment	Mid Term Exam	End Term Exam	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	INTRODUCTION TO ALGORITHM ANALYSI	[S &	DES	SIGN	Ī
Course Code	BCAS2004				
Prerequisite	Fundamentals of programming & Data structures				
Corequisite					
Antirequisite					
		L	T	P	C
		3	0	0	3

To introduce students, the concepts of algorithm analysis for find out the space and time complexity of different algorithms. Different design techniques such as greedy method, divide and conquer, backtracking, dynamic programming, branch and bound are to be studied for finding the solution to the different problems. It also provides an insight into the basic concepts of NP and NP-hard problems and their relevance in research.

Course Outcomes

CO1	On completion of this subject the student shall be able to find out the efficiency of
	algorithms for different problems.
CO2	Students able to understand data structure concepts
CO3	Understand advance design and analysis techniques
CO4	Understand the concept of Graph Algorithms

Text Book (s)

T. Cormen, C.E. Leiserson, R.L. Rivest & C. Stein – Introduction to Algorithms – $PHI-2^{nd}$ Edition, 2005.

Reference Book (s)

- 1. Knuth E. Donald, Art of Computer Programming Sorting and Searching Vol3, Second Edition, Pearson Education.
- 2. Brassard Bratley, "Fundamental of Algorithms", PHI
- 3. A V Aho etal, "The Design and analysis of Algorithms", Pearson Education
- 4. Adam Drozdek, "Data Structures and Algorithms in C++", Thomson Asia

Unit I	Introduction to Algorithms	8 Hours		
Introduction to Algorithms & Analysis - Design of Algorithms, Growth of function, Complexity of Algorithms, Asymptotic Notations, Recurrences.				
Sorting: Insertion	on Sort, Quick Sort, Merge Sort			
Unit II	Advance Data Structure	8 Hours		
Advanced Data S	Structure: Binary Search Trees, Red Black Trees			
Unit III	Advance Design and Analysis Techniques	8 Hours		
Advanced Desig	n and Analysis Techniques: Dynamic programming, Greedy Algo	rithm		
Unit IV	Graph Algorithms	8 Hours		
Graph Algorithms: Elementary Graph Algorithms, Breadth First Search, Depth First Search, Minimum Spanning Tree, Kruskal's Algorithms, Prim's Algorithms, Single Source Shortest Path				

Unit V	Special Topics in AAD	8 Hours	
String Matching, Introduction of NP-Hard and NP-Completeness , Matrix Operations			

Internal Assessment	Mid Term Exam	End Term Exam	Total Marks	
(IA)	(MTE)	(ETE)		
20	30	50	100	

Name of The Course	Enterprise Resource Planning and Management				
Course Code	BCAS2006				
Prerequisite					
Corequisite					
Antirequisite					
		L	T	P	C
		3	0	0	3

The objective of this course is to:

- 1. To know what is ERP.
- 2. To learn different ERP technologies

Course Outcomes

CO1	Learn about mobile technology.
CO2	Understand enterprise modelling and integration technologies
CO3	Understand ERP And related technologies
CO4	Students able to understand ERP Implementation
CO5	Understand ERP System technologies.

Text Book (s)

- 1. ERP: Demystified Alexis Leon (Tata McGraw Hill)
- 2. ERP Ravi Shankar and S. Jaiswal (Galgotia)

Reference Book (s)

1. Lee C.Y.& William (1997), "Mobile Cellular Telecommunication", McGraw Hill Inter Edition.

Unit-1: ERP: An Overview	8 Hours		
What is ERP - Reasons for Growth Of ERP - Problem areas in ERP implementations-The future of			
ERP - Characteristics and features of ERP - Benefits of ERP.			
Unit-2: Enterprise Modelling and Integration for ERP	8 Hours		
Enterprise-An overview - What is enterprise - Integrated Management Information	n - The role of		
enterprise - Business modelling - Integrated Data Model - Role of Common/Shared -Enterprise			
Database - Linkages of the Enterprise - Establishing Customer-Enterprise Link Establishing			
Vendor-Enterprise Link - Establishing Links within the Enterprise -Establishing Links with			
Environment - Scope of Enterprise system - Generic Model of ERP System - Client/Server			
Architecture and Enterprise wide Computing - Characteristics of client/Server Architecture -			
Different Components of ERP Client/Server Architecture			
Unit-3: ERP And related Technologies	8 Hours		
BPR(Business Process reengineering) – Definition - BPR –The different phases			
Enterprise Redesign Principles - BPR and IT - Data Warehousing - Data Warehouse Components -			
Structure and Uses of Data Warehouse - Data Mining - What Is Data Mining			
Data Mining Process - Advantages and Technologies Used In Data Mining - OLAP			
Supply Chain Management - Definition - Stevan's Model - Benefits - ERP Vs SCM			
CRM			

Unit-4: ERP Implementation

7 Hours

Evolution - Evolution of ERP - Evolution of Packaged Software Solutions - The Obstacles in ERP implementation - ERP Implementation Lifecycle (Different Phases) - Implementation Methodology - ERP Implementation - The Hidden Costs -In-house Implementation-Pros and Cons - Vendors and role of vendors for ERP - Consultants and role of consultants for ERP.

Unit-5: Technologies In ERP System

9 Hours

Introduction - Electronic Data Interchange(EDI) - Use of EDI - Evolution of EDI
Benefits of the EDI - EDI Standards - EDI Services - EDI Components - EDI Administration
IDoc Application - EDI Integration - ALE Integration - Internet Integration - OCR Integration

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Name of The Course	Computer Networking				
Course Code	BCAS2007				
Prerequisite					
Corequisite					
Antirequisite					
		L	T	P	C
		3	0	0	3

The objective of this course is to:

- 1. Teach fundamental concepts of networks.
- 2. Give hands on training of network installation and configuration.

Course Outcomes

CO1	Understand basic of networking from the user's, developer's and administrator's perspective.
CO2	Students able to Physical Layer and Data Link Layer
CO3	Understand the concept of Network Layer
CO4	Demonstration of Transport and Application Layer
CO5	Students able to known network administration

Text Book (s)

- 1. A.S.Tanenbaum, "Computer Networks"; Pearson Education Asia, 4 thEd. 2003.
- 2. Behrouz A.Forouzan, "Data Communication and Networking", Tata MCGraw Hill,
- 3. William stallings, "Data and computer communications", Pearson education Asia, ,

Reference Book (s)

- 1. MCSE: Networking Essentials Study Guide -- Tata McGrawHill Publication
- 2. MCSE: Windows 2000 N/W Infrastructure design Tata McGraw Hill Publication

Course Content:

Unit-1: Basic Concepts, Network Reference Models

8 Hours

Basic Concepts: Components of data communication, distributed processing, standards and organizations. Line configuration, topology, Transmission mode, and categories of networks (LAN,WAN,PAN). Network Topologies (Bus, Star, Ring, Star Bus, Star Ring and Physical Mesh), OSI and TCP/IP Models: Layers and their functions, comparison of models.

Unit-2: Physical Layer and Data Link Layer

8 Hours

Transmission Media: Guided and Unguided. CSMA, Ethernet, FDDI, Token Ring ,Wireless LAN. DLL: Basic functions of DLL, Circuit switching, packet switching and message switching. Flow control, error control. MAC.

Unit-3: Network Layer

8 Hours

Hub, Repeaters, bridges, gateways, routers, design issues of network layer, Routing algorithms,. Network Layer Protocols: IPv4 – Unicast Routing Algorithms – Protocols – Multicasting Basics – IPv6 Addressing – IPv6 Protocol, ARP – RARP – DHCP – ICMP.

Unit-4: Transport and Application Layer

8 Hours

Transport layer: Process- to- Process delivery, Data traffic, Congestion control: Open loop, closed loop. Flow control and error Control. UDP – TCP. Application Layer: Client- Server model, DNS. DNS in internet E-mail, SMTP, FTP, HTTP, World Wide Web.

Unit-5: Network Administration

8 Hours

Analyzing the technical support structure (Network manager support, End-user Support), Analyzing the current Network Management, Managing Network Connections, Installing and configuring Network adapters, Installing and Configuring TCP/IP Protocol, Managing network bindings, Sharing files and Printers, Building Internet and Intranet Infrastructure, IP address scheme, assigning IP addresses.

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Name of The Course	Operating System				
Course Code	BCAS2015				
Prerequisite					
Corequisite					
Antirequisite					
		L	T	P	C
		3	0	0	3

- 1. Provide the fundamental principles of modern operating systems that explores design aspects of modern operating systems.
- 2. Solve problems using the above concepts.

Course Outcomes

CO1	Understand how the operating system abstractions can be used in the development of
	application programs, or to build higher level abstractions
CO2	Understand how the operating system abstractions can be implemented
CO3	Understand the principles of concurrency and synchronization, and apply them to write
	correct concurrent programs/software
CO4	Understand basic resource management techniques (scheduling or time management, space management) and principles and how they can be implemented. These also include issues of performance and fairness objectives, avoiding deadlocks, as well as security and protection
CO5	Understand the storage management concepts

Text Book (s)

1. Operating System Concepts (7th Ed) by Silberschatz and Galvin, Wiley, 2000

Reference Book (s)

- 1. Operating Systems (5th Ed) Internals and Design Principles By WilliamStallings, Prentice Hall,
- 2. Modern Operating Systems by Andrew S Tanenbaum, Prentice Hall India, 1992.
- 3. Operating Systems (3rd edition) by Gary Nutt, Nabendu Chaki, SarmishthaNeogy, Pearson
- 4. Operating Systems Design & Implementation Andrew S. Tanenbam, AlbertS. Woodhull Pearson
- 5. Operating Systems Achyut S. Godbole Tata Mc Graw Hill
- 6. Operating Systems D.M.Dhardhere Tata Mc Graw Hill

Unit I:	8 Hours
Operating System and Function, Evolution of Operating System, System Softw	are, OS services and
Components: Multitasking, Multiprogramming, Multiprocessing, Time	Sharing, Buffering,
Spooling, Distributed OS	

Unit II: 8 Hours

Concept of process and threads: Process states, Process management, Critical Section, Problem, Semaphores, Classical Problems in Concurrency, Inter Processes Communication, Process Generation, Process Scheduling.

Unit III: 8 Hours

Scheduling Concept, Performance Criteria Scheduling Algorithm, Evolution, Multiprocessor Scheduling. Deadlock: System Model, Deadlock Characterization, Prevention, Avoidance and Detection

Unit IV: 8 Hours

Memory partitioning: Swapping, Paging, Segmentation Virtual memory: Overlays, Demand paging, Performance of Demand paging, Virtual memory concepts

Page replacement algorithms, Allocation algorithms, Example OS: Linux

Unit V: 8 Hours

I/O Devices and The Organization of I/O Function, I/O Buffering, Disk I/O, Operating System Design Issues. File System: File Concept, File Organization and Access Mechanism, File Directories, File Protection, File Sharing, Implementation Issues.

Continuous Assessment Pattern

Internal Assessment	Mid Term Exam	End Term Exam	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	SOFTWARE ENGINEERING				
Course Code	BCAS2016				
Prerequisite	Computer Programming Computer science				
Corequisite					
Antirequisite					
		L	T	P	C
		3	0	0	3

Course Objectives:

- 1. Large scale software development poses special challenges.
- 2. This course targets to expose the students to the challenges of large scale software development and would expose the students as to how to overcome those.

- 3. Starting with basic life cycle model concepts, it would discuss requirements specification, design, and testing issues.
- 4. The concepts will be illustrated with appropriate examples.

Course Outcomes

CO1	Understand basic concepts and applications of Software Engineering.
CO2	Work with software requirement engineering process.
CO3	Understand the concepts of software design.
CO4	Develops the basic concepts of Coding and Testing concepts.
CO5	Understand the principles of software maintenance.

Text Book (s):

- 1) Roger S Pressman," Software Engineering A Practitioner's Approach", McGraw Hill, USA, 2007.
- 2) Sommerville I, "Software Engineering", Pearson Education India, New Delhi, 2006.

Reference Book (s):

- 1) Rajib Mall, Fundamentals of Software Engineering, PHI Publication.
- 2) K. K. Aggarwal and Yogesh Singh, Software Engineering, New Age International Publishers.
- 3) Pankaj Jalote, Software Engineering, Wiley

Course Content:

Unit-1 Introduction	8 Hours	
Introduction to Software Engineering, Software Components, Software Characteristics, Software		
Crisis, Software Engineering Processes, Similarity and Differences from Cor	ventional Engineering	
Processes, Software Quality Attributes. Software Development Life Cycle (SDLC) Models: Water	
Fall Model, Prototype Model, Spiral Model, Evolutionary Developme	ent Models, Iterative	
Enhancement Models, Selection of Software Process models.		
Unit-2 Requirement Engineering Process 8 Hours		
Requirement Engineering Process: Elicitation, Analysis, Documentation, Analyzing a problem,		
creating software specification document, review for correctness, consistency, and completeness.		

creating software specification document, review for correctness, consistency, and completeness, Management of User Needs, Feasibility Study, Characteristics and components SRS Document, IEEE Standards for SRS. Software Quality Assurance (SQA): Verification and Validation, SQA Plans, Software Quality Frameworks, ISO 9000 Models, SEI-CMM Model

Unit-3 Software Design 8 Hours

Software Design: Refining the software Specification; Software design, fundamental design concept for data, Abstraction, Modularity, Software architecture, Cohesion and Coupling, Architectural design and procedural design, Data flow oriented design, Design Structure Charts, Pseudo Codes, Flow Charts, Coupling and Cohesion Measures, Function Oriented Design, Object Oriented Design, Top-Down and Bottom-Up Design, creating design document: Review of conformance for software requirements and quality.

Unit-4 Coding & Testing 8 Hours

Coding: Relationship between design and implementation, Implementation issues and programming support environment; Coding the procedural design, Good coding style and review of correctness and readability, Structured Programming, need for structured programming, Coding standards, Coding style, Maintainability of programs, Code documentation – Code efficiency

Testing: Software testing, Testing Objectives, Levels of testing– Unit Testing, Integration Testing, System testing, Acceptance Testing, Verification Vs Validation, Testing for Functionality and

Testing for Performance, Top-Down and Bottom-Up Testing , Incremental Vs Non incremental testing, Structural Testing (White Box Testing), Functional Testing (Black Box Testing).

Unit-5 Maintenance 8 Hours

Maintenance: Software as an Evolutionary Entity, Need for Maintenance, Categories of Maintenance: Preventive, Corrective and Perfective Maintenance, Cost of Maintenance, Software Re- Engineering, Reverse Engineering. Software Configuration Management Activities, Change Control Process, Software Version Control, An Overview of CASE Tools. Estimation of Various Parameters such as Cost, Efforts, Schedule/Duration, Constructive Cost Models (COCOMO), Function Point (FP) Based Measures, Cyclomatic Complexity Measures, Software Risk Analysis and Management.

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Name of The Course	.NET Technology				
Course Code	BCAS2025				
Prerequisite	Programming language C				
Corequisite	None				
Antirequisite	None				
		L	T	P	C
		3	0	0	3

To design and implement of .NET technology concepts.

Course Outcomes

CO1	To understand the basis of .NET Framework.
CO2	Develop applications with c# using .NET Framework.
CO ₃	Develop applications with Visual Basic using .NET Framework
CO4	Develop active server pages using .NET Framework.
CO5	Read and write data from/to files in ADO.Net .

Text Book (s)

1. Introduction to C# Joes 2 Pros (C# Exam Prep 70-536) by Peter Bako.

Reference Book (s)

- 1.Jeffrey R.Shapiro"The Complete Reference Visual Basic.NET"TataMcgraw Hill(2002 Edition)
- 2. Pro ASP.NET 4 in C# 2010, MacDonald and Freeman
- 3. Visual Studio 2010 and .Net 4 Six-in-One(Wrox Programmer to Programmer)

Course Content:

Unit-1 Introduction	8 Hours		
Introducing C#, Understanding .NET, Overview of C#, Literals, Variables,	Data Types, Operators,		
Expressions, Branching, Looping, Methods, Arrays, Strings, Structures,	Enumerations, Classes,		
Objects, Inheritance, Polymorphism, Interfaces, Operator Overloading, Delegates, Events, Error			
Exceptions, Defining classes and class members. Assembly, Components of Assembly, Private			
Shared Assembly, Garbage Collector, JIT compiler. Namespaces Collections, Comparisons			
Conversions, Delegates and Events.			
Unit-2	8 Hours		

Getting Started with .Net Framework, Exploring Visual Studio .NET, Inside a C# Program, Data Types, Statements, Arrays, Using Strings, Objects, Classes and Structs, Properties, Inheritance, Indexers, Delegates, Events, Namespaces, Generics, Collections and Data Structures, Exception Handling, Threading, Using Streams and Files, Reflection, Assemblies, versioning, Windows Forms, Controls, Data binding to Conrols, Advanced Database Programming using ADO.net, Using GDI +,Networking,.net Remoting, Manipulating XML.

Unit-3 Creating Applications	8 Hours
------------------------------	---------

Creating Applications with Visual Basic.NET, Variables, Constants, and Calculations, Making Decisions and Working with Strings, Lists, Loops, Validation, Sub Procedures and Functions, Multiple Forms, Standard Modules, and Menus, Arrays, Timers, Form Controls, File Handling, Exception Handling, Working with Databases, Advanced Database Programming using ADO.net,

Classes, Generics, Collections, Inheritance, Custom Controls, Packaging & deployment, Using Crystal Reports

Unit-4 8 Hours

Building a Web Application, Examples Using Standard Controls, Using HTML Controls, Validating Form Input Controls using Validation Controls, Understanding Applications and State, Applying Styles, Themes, and Skins, Creating a Layout Using Master Pages, Binding to Databases using Controls, Data Management with ADO.net, Creating a Site Navigation Hierarchy, Navigation Controls, Membership and Role Management, Login Controls, Securing Applications, Caching For Performance, Working with XML, Using Crystal Reports in Web Forms.

Unit-5 8 Hours

Databases: Introduction, Using SQL to work with database, retrieving and manipulating data with SQL, working with ADO.NET, ADO.NET architecture, ASP.NET data control, data source control, deploying the web site. Crystal reports. LINQ: Operators, implementations, LINQ to objects, XML, ADO.NET, Query Syntax.

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Name of The Course	Linux administration				
Course Code	BCAS2021				
Prerequisite					
Corequisite					
Antirequisite					
		L	T	P	C
		3	0	0	3

- To familiarize students with the Linux environment
- To learn the fundamentals of shell scripting/programming
- Design and implement common system automation tasks using shell scripts

Course Outcomes

CO1	Understand the history of Linux and its environment. Comparing Linux and UNIX
	operating syste. Demonstrating the installation of Linux based operating system (Fedora
	and Ubuntu) on computer system.
CO2	Explain and appraise the philosophy behind Open Source Software and GNU Public
	License. Differentiating between Windows based OS and Linux based OS.
CO3	Understanding and Practicing basic Linux commands - ls, cp, cat, mv, rm, chmod, ping,
	who, who -b, who-m. Analysing security and System Integrity. Managing Processes and
	users on Linux system. Managing networking using NFS and NIS.
CO4	Understanding boot process and analysing LILO and GRUB boot methods. Analysing
	dual boot using Linux and Windows based operating system. Explain different aspects
	of Linux file system and comparing different file system on a Linux distribution.
CO5	Understanding and practicing vi editor and shell. Understanding and practicing shell
	programming constructs. Creating and executing shell scripts.

Text Book (s):

- 1. Richard Petersen, The Complete Reference Linux, McGraw-Hill.
- 2. LINUX kernel development by Robert Love.
- 3. YashwantKanetkar, UNIX & Shell programming BPB
- 4. Wale Soyinka, "Linux Administration: A Beginner's Guide", McGraw Hill Companies

Reference Book (s):

- 1. M.G.Venkateshmurthy, Introduction to UNIX & Shell Programming, Pearson Education
- 2. Ellen Siever, Stephen Figgins, Robert Love, Arnold Robbins, "Linux in a Nutshell", O' Reilly

Unit I: History and Installation of Linux	7 Hours			
History, Hardware and Environmental Considerations, Server Design, Methods of Installation,				
Installing Fedora, Installing Ubuntu Server. Dual-Booting Issues, Con	nparison between UNIX			
and LINUX.	-			
Unit II:Introduction to Linux: Basic Terminology 7 Hours				
Linux – The Operating System, Open Source Software, Features of Linux, GNU, GNU Public				
License, Advantages of Open Source Software, Difference between Windows and Linux.				
License, Advantages of Open Source Software, Difference between W	indows and Linux.			
License, Advantages of Open Source Software, Difference between W	indows and Linux.			

General-Purpose commands, File oriented commands, directory orientedcommands, Communication-orientedcommands, processorientedcommands. Commands like: ls, cp, cat, mv, rm, chmod, ping, Who, who –b, who-m etc. Security and system Integrity, Starting and Stopping the System, System Activity and Process Management, Users, Miscellaneous.

Unit IV: Boot Methods and Linux file system 7 Hours

Boot Methods: The Boot Process, LILO, GRUB, Dual-Booting Linux and Windows XP/Vista, BootTime Kernel Options.

Introduction to Linux file system: Architecture, aspects/features of file system, different types of file systems.

Unit V: Shell Programming 9 Hours

vieditor, features of different shells, I/Oinshell, controlstructures, loops, subprograms. Shell scripts: Creating&executingshell scriptsinLinux, shell variables, purpose of shell scripts.

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Name of The Course	GRAPH THEORY				
Course Code	BCAS2013				
Prerequisite	Basic Mathematics				
Corequisite					
Antirequisite					
_		L	T	P	C
		3	0	0	3

The main objective of this course is to introduce graphs as a powerful modelling tool that can be used to solve practical problems in various fields. To achieve this goal, the course introduces the main concepts of graph theory, graph representations and the basic classes of graphs. Several famous graph problems and associated algorithms are also covered. At the end of this course, the student should be able to apply the abstract concepts of graph theory in modelling and solving non-trivial problems in different fields of study.

Course Outcomes

CO1	Understand the basic concepts and applications of Graph theory.
CO2	Work with trees and finding minimum spanning tree of a graph.
CO ₃	Understand the concepts of graph traversal and matching.
CO4	Develops the basic concepts of matrix represeantation of a graph.
CO5	Understand the principles of planarity and coloring of graphs.

Text Book (s):

1. Deo, N, Graph theory with applications to Engineering and Computer Science, PHI

Reference Book (s):

- 1. S. R. Jena and S. Patro, "Design and Analysis of Algorithms, Laxmi Publications, New Delhi.
- 2. Gary Chartrand and Ping Zhang, Introduction to Graph Theory, TMH
- 3. Robin J. Wilson, Introduction to Graph Theory, Pearson Education
- 4. Harary, F, Graph Theory, Narosa
- 5. Bondy and Murthy: Graph theory and application. Addison Wesley.

Unit-1 Introduction	8 Hours			
Graphs, Sub graphs, some basic properties, various example of graphs & their sub graphs, walks,				
path & circuits, connected graphs, disconnected graphs and component	, Euler graphs, various			
operation on graphs, Hamiltonian paths and circuits, the traveling sales man	problem.			
Unit-2 Trees	8 Hours			
Trees and fundamental circuits, distance diameters, radius and pendent ven	rtices, rooted and binary			
trees, on counting trees, spanning trees, fundamental circuits, finding all spanning trees of a graph				
and a weighted graph, algorithms of primes, Kruskal and Dijkstra Algorithm	ns			
Unit-3 Traversability and Matching 8 Hours				
Cuts sets and cut vertices, some properties, all cut sets in a graph, fundamental circuits and cut sets,				
connectivity and separability, network flows Planer graphs, combinatorial and geometric dual.				
Unit-4 Matrix Representation of a Graph 8 Hours				
Vector space of a graph and vectors, basis vector, cut set vector, circuit vector, circuit and cut set				
subspaces, Matrix representation of graph – Basic concepts; Incidence matrix, Circuit matrix, Path				
matrix, Cut-set matrix and Adjacency matrix. Coloring, covering and partitioning of a graph.				

Unit-5 Planarity	and Coloring				8 H	ours	

Chromatic number, chromatic partitioning, chromatic polynomials, matching, covering, four color problem Discussion of Graph theoretic algorithm wherever required. Kuratowski graphs, detection of planarity, geometric dual, Discussion on criterion of planarity, thickness and crossings.

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Name of The Course	Artificial Intelligence and Machine Learning using Python					
Course Code	BCA9001					
Prerequisite	Discrete Maths and Probability Theory					
Corequisite						
Antirequisite						
		L	T	P	C	
		3	0	0	3	

Course Objectives: Presentation of artificial intelligence as a coherent body of ideas and methods to acquaint the student with the basic programs in the field and their underlying theory. Students will explore this through problem-solving paradigms, logic and theorem proving, language and image understanding, search and control methods and learning.

Course Outcomes

CO1	Understand different types of AI agents and implement them using different search algorithms.
CO2	Apply the knowledge and reasoning ability in logical agents and planning in real world.
CO3	Understand representation and manipulation of complex information, knowledge and uncertainty.
CO4	Analyze different Classification Techniques.
CO5	Understand the Machine Learning and its application.

Text Book (s)

1. Elaine Rich and Kevin Knight, "Artificial Intelligence", McGraw-Hill

Reference Book (s)

- 1. Stuart Russell, Peter Norvig, "Artificial Intelligence A Modern Approach", Pearson Education
- 2. E Charniak and D McDermott, "Introduction to Artificial Intelligence", Pearson Education
- 3. Dan W. Patterson, "Artificial Intelligence and Expert Systems", Prentice Hall of India

Unit-1: Introduction to AI	8 Hours				
Introduction to Artificial Intelligence, Foundations and History of Artificial Applications of Artificial Intelligence, Intelligent Agents, Structure of Intell vision, Natural Language Possessing.					
Unit-2 : Searching	8 Hours				
Searching for solutions, Uniformed search strategies, Informed search strategies, Hill Climbing, Best First Search, A* Algorithm, Constraint Satisfaction, Search for games, Min-Max and Alpha Beta Pruning.					

Unit-3: Knowledge Representation	8 Hours				
Propositional logic, Theory of first order logic, Inference in First order logic chaining, Clauses and Resolution.	, Forward & Backward				
Unit-4: Learning	8 Hours				
Semantic Nets, Markov Model ,Hidden Markov Models (HMM), Bayesian Networks.					
Unit-5 : Machine Learning	8 Hours				
Introduction to Machine Learning, Supervised and unsupervised learning, Decision trees, Naive Bayes models, EM algorithm, Reinforcement learning.					

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Name of The Course	Mobile Application Development				
Course Code	BCAS3002				
Prerequisite	Object-oriented design principles, C/ C++/ Java/Java	a-scri	ipt, e	etc	
Corequisite	None				
Antirequisite	None				
_		L	T	P	C
		3	0	0	3

- 1. Introduce the fundamentals and abstract concepts of mobile application.
- 2. Provide students with the tools and knowledge necessary to create applications that can run on mobile devices.

Course Outcomes

CO1	Understand the technical challenges posed by current mobile devices and wireless communications; be able to evaluate and select appropriate solutions.
CO2	
CO3	Use an appropriate application development to design, write and test small interactive programs for mobile devices.
CO4	Identify the important issues of developing mobile computing systems and applications.
CO5	Develop mobile computing applications by analyzing their characteristics and requirements, selecting the appropriate computing models and software architectures, and applying standard programming languages and tools.

Text Book (s)

- 1. Pogue, iPhone: The Missing Manual (4th ed.), Pogue Press, 2010. ISBN: 978-1449393656 **Reference Book (s)**
 - 1. Guy Hart-Davis, How to Do Everything iPod, iPhone & iTunes (5th ed.), McGraw-Hill Osborne Media, 2009. ISBN: 978-0071630245
 - 2. W. Frank Ableson; Robi Sen; Chris King; C. Enrique Ortiz, Android in Action (3rd ed.), Manning Publications, 2012. ISBN: 978-1-61729-050-3

Unit I: Mobile Application Development Overview	9 Hours					
Mobile (Cellular) Telephony: mobile devices/radio communications, 1	G/2G/3G/4G, carriers					
device and carrier dependence and independence, Categories of Mobile	Apps: phone-related,					
Internet/Web-based, games, GPS-based, standalone utilities, integration	utilities, Platform					
Overview, Mobile Devices Profiles, Mobile Software, Options for develop	oment, Common UI					
Elements.						
Unit II: Architecture, interfaces 8 Hours						
Software architecture, application models, user interfaces, Data storage: ordin	nary UNIX File System					
files, SQ Lite Databases, object persistence. Networking: Internet,	Bluetooth, Near-Field					
Communication (NFC). On-board instruments: accelerometers, compas	s, GPS, etc. Specific					
devices: Apple iOS (iPhone/ iPad/ iPod Touch), Android devices.						
Unit III: Platforms and Develop environments	8 Hours					

Operating platforms: Apple iOS, Google Android, windows iPhone7 Development environments: Xcode /Cocoa Frameworks/Objective-C/ iOS simulator, Eclipse (w. Android Development Tools)/Android Application Framework/Java/Android device emulator.

Unit IV: Introduction to Android Programming

7 Hours

Installing Android Development Tools , Core Java Concepts, Introduction of android Framework, Android Development Tools, Creating Android Application and Activities, All controls, View Groups(Gallery, Gridview..etc).

Unit V: Android Application Development

8 Hours

Working with Menus, Intent, 2DGraphics, 2D animation, Audio, Video, Preferences(with all controls), Using File System (from Internal and External), Accessing Sdcard, Database and Content Provider Maps, Geo-coding and Location Based Services, Parsing: Dom Parsing, Json Parsing, Sax Parsing, Pull Parsing.

Internal Assessment	Mid Term Exam	End Term Exam	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Computer Graphics				
Course Code	BCAS3003				
Prerequisite	Object-oriented design principles, C/ C++/ Java/Java	a-scr	ipt, e	tc	
Corequisite	None				
Antirequisite	None				
		L	T	P	C
		3	0	0	3

- To enlighten the working principles of display devices, and concepts of resolution.
- To understand the fundamental data-structures and algorithms used for output primitives.
- To design graphics programmes using mathematical and theoretical foundations.
- To hypothesize 3D models of objects.
- To organize steps and plan for generation of animations.

Course Outcomes

CO1	Apply mathematics, physics and computer programming to computer graphics applications		
	and write programmes for various output primitives.		
CO2	Summarize and critically review the routines in computer graphics packages like Paint Brush.		
CO3	Compare various object representation systems in Graphics systems.		
CO4	Be immediately ready to contribute in a significant way to the computer graphics industry.		
CO5	Demonstrate the knowledge, technical skills and personal discipline to be successful in		
	specialized, computer-based graphics field.		

Text Book (s)

- 1. D. Hearn, P. Baker, "Computer *Graphics C Version*", 2nd Edition, Pearson Education, 1997 **Reference Book (s)**
 - 1. Heam Donald, Pauline Baker M: "Computer Graphics", PHI 2nd Edn. 1995.
 - 2. Harrington S: "Computer Graphics A Programming Approach", 2nd Edn. Mc GrawHill.
 - 3. Shalini Govil-Pai, Principles of Computer Graphics, Springer, 2004.

Unit I: Overview of Graphics Systems	9 Hours			
Video display devices, Raster-Scan System, Random-Scan, Systems.	Random-Scan Systems			
Graphics monitors and work stations. Input devices: Hard copy devices. Graphics software				
Unit II: Output primitives	8 Hours			
Line drawing algorithms circle generation algorithms. Ellipse Generation	ating, Algorithm. Pixel			
Addressing. Filled-Area Primitives. Fill Area Function, Cell Array, Charact	er, Generation.			
Unit III: Attributes of Output Primitives	8 Hours			
Line Attributes, Curve Attributes, Color and Gray-Scale levels. Area-F	ill Attributes, Character			
Attributes. Bundled attributes. Inquiry functions. Two-dimensional geometr	ic transformations: Basic			
transformations.				
Unit IV: Transformation	7 Hours			
Homogenous coordinates, composite transformations, other transformations. Affine transformations,				
transformation functions, Roster methods for transformations.				
Unit V: Two-dimensional viewing	8 Hours			

The viewing pipeline, viewing transformation, viewing functions. Line clipping, Cohen Sutherland line clipping, Liang Barsky line clipping Polygon clipping: Sutherland-Hodgman polygon clipping, Weiler Amerton polygon clipping.

Internal Assessment	Mid Term Exam	End Term Exam	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Name of The Course	E-Commerce				
Course Code	BCAS3004				
Prerequisite					
Corequisite					
Antirequisite					
		L	T	P	C
		3	0	0	3

To provide students with a good understanding in planning, design, development, deployment and management of e-commerce systems and applications.

Course Outcomes

CO1	Understand the basic concepts and technologies used in the field of MIS and e-commerce.
CO2	Policy and regulatory issues in E-commerce.
CO3	Implement information systems and e- commerce website.
CO4	Handle security threats in electronic commerce.
CO5	Use the basic concepts and technologies used in mobile Commerce

Text Book (s):

- 1. Ravi Kalakota and Andrew B Whinston, Frontiers of Electronic Commerce, Add. Wesley, 2004 **Reference Book (s):**
 - 1. Pete Loshin, Paul H Murphy, Electronic Commerce, II Edition, Jaico Publishers, 1996.
 - 2. David Whiteley, E-Commerce: Strategy, Technologies and Applications, McGraw Hill, 2000.
 - 3. Daniel Minoli & Emma Minoli Web Commerce Technology Tata McGraw Hill, 2002.

Unit I: Introduction	8 Hours			
Infrastructure of Electronic Commerce – Networks – Packet Switched Networks – TCP/IP – Internet				
Protocol – Domain Name Services – Web Service Protocols – Internet	Applications – Utility			
Programs – Markup Languages – Web Clients and Servers – Internets and Extra	ranets – Virtual Private			
Network.				
Unit II: Core Technology	8 Hours			
Electronic Commerce Models – Shopping Cart Technology – Data Mining	Intelligent Agents –			
Internet Marketing – XML and E-Commerce.				
Unit III: Electronic Payment System	8 Hours			
Real World Payment Systems – Electronic Fund Transfer – Digital Payme	nt – Internet Payment			
Systems – Micro Payments – Credit Card Transactions				
Unit IV: Security and Threats 8 Hours				
Threats to Network Security – Public Key Cryptography – Network Security Solutions – Firewalls.				
Unit III: Inter/Intra Organizational Electronic Commerce 8 Hours				

EDI – EDI Application in Business – Legal, Security and Privacy Issues – EDI and Electronic Commerce – Standards – Internal Information Systems

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Name of The Course	Software Project Management				
Course Code	BCAS3006				
Prerequisite					
Corequisite	None				
Antirequisite	None				
_		L	T	P	C
		3	0	0	3

- 1. Define and highlight importance of software project management.
- 2. Describe the software project management activities
- 3. Train software project managers and other individuals involved in software project.
- 4. Planning and tracking and oversight in the implementation of the software project management process
- 5. Describe the usefulness of software project management for Big data
- 6. Discuss software project management play critical role for other projects

Course Outcomes

CO1	Describe and determine the purpose and importance of project management from the			
	perspectives of planning, tracking and completion of project.			
CO ₂	2 Compare and differentiate organisation structures and project structures.			
CO3	Implement a project to manage project schedule, expenses and resources with the application			
	of suitable project management tools.			
CO4	With increase of data size update project schedule and budget considering Big data concept.			
CO5	Develop strategies to calculate risk factors involved in IT projects.			

Text Book (s)

1. Clifford F. Gray, Erik W. Larson, "Project Management: The Managerial Process with MS", Mc Graw Hill

Reference Book (s)

- 1. M. Cotterell, Software Project Management, Tata McGraw-Hill Publication.
- 2. 2. Royce, Software Project Management, Pearson Education
- 3. 3. Kieron Conway, Software Project Management, Dreamtech Press
- 4. 4. S. A. Kelkar, Software Project Management, PHI Publication.

Unit I: Introduction To Software Project Management	9 Hours	
Project Definition - Contract Management - Activities Covered By SoftwareProjectManagement -		
Overview Of Project Planning – Stepwise Project Planning		
Unit II: Project Evaluation		
Strategic Assessment – Technical Assessment – Cost Benefit Analysis – Cash Flow Forecasting –		
Cost Benefit Evaluation Techniques – Risk Evaluation.		
Unit III: ACTIVITY PLANNING 8 Hours		
Objectives – Project Schedule – Sequencing and Scheduling Activities – Network Planning Models		
- Forward Pass - Backward Pass - Activity Float - Shortening Project Duration - Activity on		
Arrow Networks – Risk Management – Nature Of Risk – Types Of Risk – Managing Risk – Hazard		
Arrow Networks – Risk Management – Nature Of Risk – Types Of Risk – T	Managing Risk – Hazard	
Identification – Hazard Analysis – Risk Planning And Control.	Managing Risk – Hazard	

Creating Framework – Collecting The Data – Visualizing Progress – Cost Monitoring –Earned Value – Priortizing Monitoring – Getting Project Back To Target – Change Control – Managing Contracts – Introduction – Types Of Contract – Stages In Contract Placement – Typical Terms Of A Contract – Contract Management – Acceptance.

Unit V: Managing People And Organizing Teams	8 Hours
--	---------

Introduction – Understanding Behavior – Organizational Behaviour: A Background – Selecting The Right Person For The Job – Instruction In The Best Methods – Motivation – The Oldman – Hackman Job Characteristics Model – Working In Groups – Becoming A Team – Decision Making – Leadership – Organizational Structures – Stress – Health And Safety – Case Studies

	Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
ĺ	20	30	50	100